메뉴 건너뛰기




Volumn 36, Issue 1, 2004, Pages 31-73

Bounding probabilistic relationships in Bayesian networks using qualitative influences: Methods and applications

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL METHODS; ENCODING (SYMBOLS); MOTION PLANNING; PROBABILITY DISTRIBUTIONS; THEOREM PROVING;

EID: 1542609594     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2003.06.002     Document Type: Article
Times cited : (10)

References (53)
  • 2
    • 0028447220 scopus 로고
    • Deliberation scheduling for problem solving in time-constrained environments
    • Boddy M., Dean T.L. Deliberation scheduling for problem solving in time-constrained environments. Artificial Intelligence. 67(2):1994;245-285.
    • (1994) Artificial Intelligence , vol.67 , Issue.2 , pp. 245-285
    • Boddy, M.1    Dean, T.L.2
  • 4
    • 0347371808 scopus 로고    scopus 로고
    • * algorithm for the computation of fastest paths in the discrete-time dynamic networks
    • * algorithm for the computation of fastest paths in the discrete-time dynamic networks IEEE Transactions on Intelligent Transportation Systems. 3(1):2002;60-74.
    • (2002) IEEE Transactions on Intelligent Transportation Systems , vol.3 , Issue.1 , pp. 60-74
    • Chabini, I.1    Lan, S.2
  • 6
    • 0002061428 scopus 로고
    • Incremental conditioning of lower and upper probabilities
    • Chrisman L. Incremental conditioning of lower and upper probabilities. International Journal of Approximate Reasoning. 13(1):1995;1-25.
    • (1995) International Journal of Approximate Reasoning , vol.13 , Issue.1 , pp. 1-25
    • Chrisman, L.1
  • 7
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum P., Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence. 60(1):1993;141-153.
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 8
    • 0031170063 scopus 로고    scopus 로고
    • An optimal approximation algorithm for Bayesian inference
    • Dagum P., Luby M. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence. 93(1-2):1997;1-27.
    • (1997) Artificial Intelligence , vol.93 , Issue.1-2 , pp. 1-27
    • Dagum, P.1    Luby, M.2
  • 9
    • 0032668348 scopus 로고    scopus 로고
    • Inference in Bayesian networks
    • D'Ambrosio B. Inference in Bayesian networks. AI Magazine. 20(2):1999;21-36.
    • (1999) AI Magazine , vol.20 , Issue.2 , pp. 21-36
    • D'ambrosio, B.1
  • 10
    • 0021444735 scopus 로고
    • Shortest path algorithms: Taxonomy and annotation
    • Deo N., Pang C. Shortest path algorithms: Taxonomy and annotation. Networks. 14:1984;275-323.
    • (1984) Networks , vol.14 , pp. 275-323
    • Deo, N.1    Pang, C.2
  • 11
    • 34147120474 scopus 로고
    • A note on two problems in connextion with graphs
    • Dijkstra E.W. A note on two problems in connextion with graphs. Numerische Mathematik. 1:1959;269-271.
    • (1959) Numerische Mathematik , vol.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 13
    • 0000418612 scopus 로고
    • An appraisal of some shortest-path algorithms
    • Dreyfus S.E. An appraisal of some shortest-path algorithms. Operations Research. 17:1969;395-412.
    • (1969) Operations Research , vol.17 , pp. 395-412
    • Dreyfus, S.E.1
  • 16
    • 0028741578 scopus 로고
    • Research issues in qualitative and abstract probability
    • Goldszmidt M. Research issues in qualitative and abstract probability. AI Magazine. 15(4):1994;63-65.
    • (1994) AI Magazine , vol.15 , Issue.4 , pp. 63-65
    • Goldszmidt, M.1
  • 19
    • 0032689493 scopus 로고    scopus 로고
    • An overview of some recent developments in Bayesian problem-solving techniques
    • Haddawy P. An overview of some recent developments in Bayesian problem-solving techniques. AI Magazine. 20(2):1999;11-19.
    • (1999) AI Magazine , vol.20 , Issue.2 , pp. 11-19
    • Haddawy, P.1
  • 20
    • 0022769799 scopus 로고
    • The fastest path through a network with random time-dependent travel times
    • Hall R.W. The fastest path through a network with random time-dependent travel times. Transportation Science. 20(3):1986;182-188.
    • (1986) Transportation Science , vol.20 , Issue.3 , pp. 182-188
    • Hall, R.W.1
  • 22
    • 0002535440 scopus 로고
    • Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning
    • P. Bonissone, M. Henrion, L. Kanal, & J. Lemmer. Elsevier
    • Henrion M., Druzdzel M.J. Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning. Bonissone P., Henrion M., Kanal L., Lemmer J. Uncertainty in Artificial Intelligence 6. 1991;17-32 Elsevier.
    • (1991) Uncertainty in Artificial Intelligence , vol.6 , pp. 17-32
    • Henrion, M.1    Druzdzel, M.J.2
  • 25
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M.I., Ghahramani Z., Jaakkola T., Saul L.K. An introduction to variational methods for graphical models. Machine Learning. 37(2):1999;183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 26
    • 0002607217 scopus 로고
    • Fastest paths in time-dependent networks for intelligent vehicle-highway systems applications
    • Kaufman D.E., Smith R.L. Fastest paths in time-dependent networks for intelligent vehicle-highway systems applications. IVHS Journal. 1(1):1993;1-11.
    • (1993) IVHS Journal , vol.1 , Issue.1 , pp. 1-11
    • Kaufman, D.E.1    Smith, R.L.2
  • 33
    • 0036567883 scopus 로고    scopus 로고
    • Evaluation of Bayesian networks with flexible state-space abstraction methods
    • Liu C.-L., Wellman M.P. Evaluation of Bayesian networks with flexible state-space abstraction methods. International Journal of Approximate Reasoning. 30(1):2002;1-39.
    • (2002) International Journal of Approximate Reasoning , vol.30 , Issue.1 , pp. 1-39
    • Liu, C.-L.1    Wellman, M.P.2
  • 36
    • 0035056609 scopus 로고    scopus 로고
    • Qualitative Bayesian networks
    • Osseiran A.C. Qualitative Bayesian networks. Information Sciences. 131(1-4):2001;87-106.
    • (2001) Information Sciences , vol.131 , Issue.1-4 , pp. 87-106
    • Osseiran, A.C.1
  • 39
    • 0027626442 scopus 로고
    • A semiqualitative approach to reasoning in probabilistic networks
    • Parsons S., Dohnal M. A semiqualitative approach to reasoning in probabilistic networks. Applied Artificial Intelligence. 7(3):1993;223-235.
    • (1993) Applied Artificial Intelligence , vol.7 , Issue.3 , pp. 223-235
    • Parsons, S.1    Dohnal, M.2
  • 41
    • 0006411640 scopus 로고
    • Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities
    • D. Poole, Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities, in: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, 1993, pp. 606-612.
    • (1993) Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence , pp. 606-612
    • Poole, D.1
  • 45
    • 0036724040 scopus 로고    scopus 로고
    • Context-specific sign-propagation in qualitative probabilistic networks
    • Renooij S., van der Gaag L.C., Parsons S. Context-specific sign-propagation in qualitative probabilistic networks. Artificial Intelligence. 140(1-2):2002;207-230.
    • (2002) Artificial Intelligence , vol.140 , Issue.1-2 , pp. 207-230
    • Renooij, S.1    Van Der Gaag, L.C.2    Parsons, S.3
  • 47
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • Shachter R.D. Probabilistic inference and influence diagrams. Operation Research. 36(4):1988;589-604.
    • (1988) Operation Research , vol.36 , Issue.4 , pp. 589-604
    • Shachter, R.D.1
  • 48
    • 0041995264 scopus 로고    scopus 로고
    • Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams)
    • R.D. Shachter, Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams), in: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998, pp. 480-487.
    • (1998) Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 480-487
    • Shachter, D.1
  • 50
    • 0025471633 scopus 로고
    • Fundamental concepts of qualitative probabilistic networks
    • Wellman M.P. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence. 44(3):1990;257-303.
    • (1990) Artificial Intelligence , vol.44 , Issue.3 , pp. 257-303
    • Wellman, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.