-
1
-
-
0000100336
-
Period three implies chaos
-
Li, T., Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 1975, 82: 985-992.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.1
Yorke, J.A.2
-
2
-
-
0001743171
-
On Devaney's definition of chaos
-
Banks, J., Brooks, J., Cairns, G. et al., On Devaney's definition of chaos, Amer. Math. Monthly, 1992, 99: 332-334.
-
(1992)
Amer. Math. Monthly
, vol.99
, pp. 332-334
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
-
4
-
-
0007180582
-
Defining chaos
-
Martelli, M., Dang, M., Seph, T., Defining chaos, Math. Magazine, 1998, 71(2): 112-122.
-
(1998)
Math. Magazine
, vol.71
, Issue.2
, pp. 112-122
-
-
Martelli, M.1
Dang, M.2
Seph, T.3
-
6
-
-
0005525599
-
Devaney's chaos or 2-scattering implies Li-Yorke's chaos
-
Huang, W., Ye, X., Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology and Its Applications, 2002, 117: 259-272.
-
(2002)
Topology and Its Applications
, vol.117
, pp. 259-272
-
-
Huang, W.1
Ye, X.2
-
7
-
-
0038545775
-
Chaotification via feedback: The discrete case
-
(eds. Chen, G., Yu, X.), Heidelberg: Springer-Verlag
-
Chen, G., Chaotification via feedback: The discrete case, in Chaos Control: Theory and Applications (eds. Chen, G., Yu, X.), Heidelberg: Springer-Verlag, 2003, 159-177.
-
(2003)
Chaos Control: Theory and Applications
, pp. 159-177
-
-
Chen, G.1
-
8
-
-
0032341745
-
Snap-back repellers as a cause of chaotic vibration of the wave equation with a Van der Pol boundary condition and energy injection at the middle of the span
-
Chen, G., Hsu, S., Zhou, J., Snap-back repellers as a cause of chaotic vibration of the wave equation with a Van der Pol boundary condition and energy injection at the middle of the span, J. Math. Physics, 1998, 39(12): 6459-6489.
-
(1998)
J. Math. Physics
, vol.39
, Issue.12
, pp. 6459-6489
-
-
Chen, G.1
Hsu, S.2
Zhou, J.3
-
9
-
-
84967763051
-
Chaotic behavior in piecewise continuous difference equations
-
Keener, J. P., Chaotic behavior in piecewise continuous difference equations, Trans. Amer. Math. Soc., 1980, 261: 589-604.
-
(1980)
Trans. Amer. Math. Soc.
, vol.261
, pp. 589-604
-
-
Keener, J.P.1
-
11
-
-
0034179570
-
Chaotifying a stable map via smooth small-amplitude high-frequency feedback control
-
Wang, X. F., Chen, G., Chaotifying a stable map via smooth small-amplitude high-frequency feedback control, Int. J. Circ. Theory Appl., 2000, 28: 305-312.
-
(2000)
Int. J. Circ. Theory Appl.
, vol.28
, pp. 305-312
-
-
Wang, X.F.1
Chen, G.2
-
12
-
-
0036340692
-
On the mathematical clarification of the snap-back repeller in higher-dimensional systems and chaos in a discrete neural network model
-
Lin, W., Ruan, J., Zhao, W., On the mathematical clarification of the snap-back repeller in higher-dimensional systems and chaos in a discrete neural network model, Int. J. of Bifurcation and Chaos, 2002, 12(5): 1129-1139.
-
(2002)
Int. J. of Bifurcation and Chaos
, vol.12
, Issue.5
, pp. 1129-1139
-
-
Lin, W.1
Ruan, J.2
Zhao, W.3
-
13
-
-
0035477663
-
Spatial chaos in a fourth-order nonlinear parabolic equation
-
Albeverio, S., Nizhnik, I. L., Spatial chaos in a fourth-order nonlinear parabolic equation, Physics Letters A, 2001, 288: 299-304.
-
(2001)
Physics Letters A
, vol.288
, pp. 299-304
-
-
Albeverio, S.1
Nizhnik, I.L.2
-
14
-
-
0002307231
-
Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation
-
Kovacic, G., Wiggins, S., Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D, 1992, 57: 185-225.
-
(1992)
Physica D
, vol.57
, pp. 185-225
-
-
Kovacic, G.1
Wiggins, S.2
-
15
-
-
0032623541
-
Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction-diffusion medium
-
Krishnan, J., Kevrekidis, I. G., Or-Guil, M. et al., Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction-diffusion medium, Computer Methods in Applied Mechanics and Engineering, 1999, 170: 253-275.
-
(1999)
Computer Methods in Applied Mechanics and Engineering
, vol.170
, pp. 253-275
-
-
Krishnan, J.1
Kevrekidis, I.G.2
Or-Guil, M.3
-
16
-
-
34249767027
-
Morse and Melnikov functions for NLS Pde's
-
Li, C., Mclaughlin, D., Morse and Melnikov functions for NLS Pde's, Comm. Math. Phys., 1994, 162: 175-214.
-
(1994)
Comm. Math. Phys.
, vol.162
, pp. 175-214
-
-
Li, C.1
Mclaughlin, D.2
-
17
-
-
0000038726
-
Homoclinic orbits and chaos in discretized perturbed NLS systems: Part I. Homoclinic orbits
-
Li, Y., Mclaughlin, D. W., Homoclinic orbits and chaos in discretized perturbed NLS systems: Part I. Homoclinic orbits, J. Nonlinear Sci., 1997, 7: 211-269.
-
(1997)
J. Nonlinear Sci.
, vol.7
, pp. 211-269
-
-
Li, Y.1
Mclaughlin, D.W.2
-
18
-
-
0041716979
-
Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics
-
Li, Y., Wiggins, S., Homoclinic orbits and chaos in discretized perturbed NLS systems: Part II. Symbolic dynamics, J. Nonlinear Sci., 1997, 7: 315-370.
-
(1997)
J. Nonlinear Sci.
, vol.7
, pp. 315-370
-
-
Li, Y.1
Wiggins, S.2
-
19
-
-
0033077219
-
Lyapunov exponent of partial differential equations
-
Shibata, H., Lyapunov exponent of partial differential equations, Physica A, 1999, 264: 226-233.
-
(1999)
Physica A
, vol.264
, pp. 226-233
-
-
Shibata, H.1
-
20
-
-
1542485036
-
Chaos in accretion disk dynamos?
-
Torkelsson, U., Brandenburg, A., Chaos in accretion disk dynamos? Chaos, Solitons and Fractals, 1995, 5: 1975-1984.
-
(1995)
Chaos, Solitons and Fractals
, vol.5
, pp. 1975-1984
-
-
Torkelsson, U.1
Brandenburg, A.2
-
21
-
-
0342538570
-
Snap-back repellers and scrambled sets in general topological spaces
-
Boyarsky, A., Góra, P., Lioubimov, V., Snap-back repellers and scrambled sets in general topological spaces, Nonlinear Analysis, 2001, 43: 591-604.
-
(2001)
Nonlinear Analysis
, vol.43
, pp. 591-604
-
-
Boyarsky, A.1
Góra, P.2
Lioubimov, V.3
-
22
-
-
2042503723
-
Chaos for discrete dynamical systems in complete metric spaces
-
Shi, Y., Chen, G., Chaos for discrete dynamical systems in complete metric spaces, Chaos, Solitons and Fractals, 2004, 22: 555-571.
-
(2004)
Chaos, Solitons and Fractals
, vol.22
, pp. 555-571
-
-
Shi, Y.1
Chen, G.2
-
25
-
-
0037884824
-
An improved version of the Marotto Theorem
-
Erratum, same journal, 2003, in press
-
Li, C., Chen, G., An improved version of the Marotto Theorem, Chaos, Solitons and Fractals, 2003, 18: 69-77; Erratum, same journal, 2003, in press.
-
(2003)
Chaos, Solitons and Fractals
, vol.18
, pp. 69-77
-
-
Li, C.1
Chen, G.2
|