메뉴 건너뛰기




Volumn 7, Issue 4, 1997, Pages 315-370

Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part II. Symbolic Dynamics

Author keywords

Chaos; Discretized nonlinear Schroedinger equations; Smale horseshoes

Indexed keywords


EID: 0041716979     PISSN: 09388974     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02678141     Document Type: Article
Times cited : (26)

References (19)
  • 1
    • 0016992794 scopus 로고
    • A Nonlinear Difference Scheme and Inverse Scattering
    • M. J. Ablowitz and J. F. Ladik. A Nonlinear Difference Scheme and Inverse Scattering. Stud. Appl. Math., 55:213, 1976.
    • (1976) Stud. Appl. Math. , vol.55 , pp. 213
    • Ablowitz, M.J.1    Ladik, J.F.2
  • 3
    • 0000958356 scopus 로고
    • 1 Linearization, and Homoclinic Bifurcation
    • 1 Linearization, and Homoclinic Bifurcation. J. Diff. Eq., 79:189-231, 1989.
    • (1989) J. Diff. Eq. , vol.79 , pp. 189-231
    • Deng, B.1
  • 4
    • 0001630378 scopus 로고
    • On Silnikov's Homoclinic-saddle focus Theorem
    • B. Deng. On Silnikov's Homoclinic-saddle focus Theorem. J. Diff.Eq., 102:305-329, 1993.
    • (1993) J. Diff.Eq. , vol.102 , pp. 305-329
    • Deng, B.1
  • 7
    • 84995270426 scopus 로고
    • A Strange Family of Three-Dimensional Vector Fields Near a Degenerate Singularity
    • P. J. Holmes. A Strange Family of Three-Dimensional Vector Fields Near a Degenerate Singularity. J. Diff. Eq., 37:382-403, 1980.
    • (1980) J. Diff. Eq. , vol.37 , pp. 382-403
    • Holmes, P.J.1
  • 8
    • 0010566817 scopus 로고
    • Backlund Transformations and Homoclinic Structures for the NLS Equation
    • Y. Li. Backlund Transformations and Homoclinic Structures for the NLS Equation. Phys. Letts. A, 163:181-187, 1992.
    • (1992) Phys. Letts. A , vol.163 , pp. 181-187
    • Li, Y.1
  • 9
    • 0000038726 scopus 로고    scopus 로고
    • Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits
    • Y. Li and D. W. McLaughlin. Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits. J. Nonlin. Sci., 7:211-269, 1997.
    • (1997) J. Nonlin. Sci. , vol.7 , pp. 211-269
    • Li, Y.1    McLaughlin, D.W.2
  • 10
    • 34249767027 scopus 로고
    • Morse and Melnikov Functions for NLS Pdes
    • Y. Li and D. W. McLaughlin. Morse and Melnikov Functions for NLS Pdes. Comm. Math. Phys., 162:175-214, 1994.
    • (1994) Comm. Math. Phys. , vol.162 , pp. 175-214
    • Li, Y.1    McLaughlin, D.W.2
  • 11
    • 0002063004 scopus 로고
    • Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes
    • D. W. McLaughlin and E. A. Overman. Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes. Surv. Appl. Math. 1, 1993.
    • (1993) Surv. Appl. Math. , vol.1
    • McLaughlin, D.W.1    Overman, E.A.2
  • 12
    • 0000038096 scopus 로고    scopus 로고
    • Homoclinic Orbits in a Four-Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation Study
    • Springer-Verlag, New York
    • D. W. McLaughlin, E. A. Overman, S. Wiggins, and C. Xiong. Homoclinic Orbits in a Four-Dimensional Model of a Perturbed NLS Equation: A Geometric Singular Perturbation Study. Dynamics Reported 5, Springer-Verlag, New York, 1996.
    • (1996) Dynamics Reported , vol.5
    • McLaughlin, D.W.1    Overman, E.A.2    Wiggins, S.3    Xiong, C.4
  • 13
    • 0003292012 scopus 로고
    • Stable and Random Motions in Dynamical Systems
    • Princeton University Press, Princeton, NJ
    • J. Moser. Stable and Random Motions in Dynamical Systems. Annals of Mathematics Studies, 77, Princeton University Press, Princeton, NJ, 1973.
    • (1973) Annals of Mathematics Studies , vol.77
    • Moser, J.1
  • 15
    • 0001234956 scopus 로고
    • A Case of the Existence of a Countable Number of Periodic Motions
    • L. P. Silnikov. A Case of the Existence of a Countable Number of Periodic Motions. Sov. Math. Dokl., 6:163-166, 1965.
    • (1965) Sov. Math. Dokl. , vol.6 , pp. 163-166
    • Silnikov, L.P.1
  • 16
    • 0002997858 scopus 로고
    • The Existence of a Denumerable Set of Periodic Motions in Four-Dimensional Space in an Extended Neighborhood of a Saddle-Focus
    • L. P. Silnikov. The Existence of a Denumerable Set of Periodic Motions in Four-Dimensional Space in an Extended Neighborhood of a Saddle-Focus. Sov. Math. Dokl., 8:54-58, 1967.
    • (1967) Sov. Math. Dokl. , vol.8 , pp. 54-58
    • Silnikov, L.P.1
  • 17
    • 0000063614 scopus 로고
    • On a Poincare-Birkhoff Problem
    • L. P. Silnikov. On a Poincare-Birkhoff Problem. Math. USSR Sb., 3:353-371, 1967.
    • (1967) Math. USSR Sb. , vol.3 , pp. 353-371
    • Silnikov, L.P.1
  • 18
    • 84956230541 scopus 로고
    • A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type
    • L. P. Silnikov. A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type. Math. USSR Sb., 10:91-102, 1970.
    • (1970) Math. USSR Sb. , vol.10 , pp. 91-102
    • Silnikov, L.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.