-
1
-
-
0016992794
-
A Nonlinear Difference Scheme and Inverse Scattering
-
M. J. Ablowitz and J. F. Ladik. A Nonlinear Difference Scheme and Inverse Scattering. Stud. Appl. Math., 55:213, 1976.
-
(1976)
Stud. Appl. Math.
, vol.55
, pp. 213
-
-
Ablowitz, M.J.1
Ladik, J.F.2
-
2
-
-
0000593885
-
Correlations between Chaos in a Perturbed Sine-Gordon Equation and a Truncated Model System
-
A. R. Bishop, R. Flesch, M. G. Forest, D. W. McLaughlin, and E. A. Overman II. Correlations between Chaos in a Perturbed Sine-Gordon Equation and a Truncated Model System. SIAM J. Math. Anal., 1511-1536, 1990.
-
(1990)
SIAM J. Math. Anal.
, pp. 1511-1536
-
-
Bishop, A.R.1
Flesch, R.2
Forest, M.G.3
McLaughlin, D.W.4
Overman E.A. II5
-
3
-
-
0002647995
-
A Model Representation of Chaotic Attractors for the Damped Driven Pendulum Chain
-
A. R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman II. A Model Representation of Chaotic Attractors for the Damped Driven Pendulum Chain. Phys. Lett. A, 17-25, 1990.
-
(1990)
Phys. Lett. A
, pp. 17-25
-
-
Bishop, A.R.1
Forest, M.G.2
McLaughlin, D.W.3
Overman E.A. II4
-
4
-
-
0001356311
-
Persistence and Smoothness of Invariant Manifolds for Flows
-
N. Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows. Ind. University Math. J., 21:193-225, 1971.
-
(1971)
Ind. University Math. J.
, vol.21
, pp. 193-225
-
-
Fenichel, N.1
-
5
-
-
0016070051
-
Asymptotic Stability with Rate Conditions
-
N. Fenichel. Asymptotic Stability with Rate Conditions. Ind. Univ. Math. J., 23:1109-1137, 1974.
-
(1974)
Ind. Univ. Math. J.
, vol.23
, pp. 1109-1137
-
-
Fenichel, N.1
-
6
-
-
0001957566
-
Asymptotic Stability with Rate Conditions
-
N. Fenichel. Asymptotic Stability with Rate Conditions. Ind. Univ. Math. J., 26:81, 1977.
-
(1977)
Ind. Univ. Math. J.
, vol.26
, pp. 81
-
-
Fenichel, N.1
-
7
-
-
34250627892
-
Geometric Singular Perturbation Theory for Ordinary Differential Equations
-
N. Fenichel. Geometric Singular Perturbation Theory for Ordinary Differential Equations. J. Diff. Eqns., 31:53-98, 1979.
-
(1979)
J. Diff. Eqns.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
8
-
-
0000962873
-
Sur Literation et les Solution Asymptotiques des Equations Differentielles
-
J. Hadamard. Sur Literation et les Solution Asymptotiques des Equations Differentielles. Bull. Soc. Math. France, 29, 1901.
-
(1901)
Bull. Soc. Math. France
, vol.29
-
-
Hadamard, J.1
-
10
-
-
0008495183
-
Orbits Homoclinic to Resonances: The Hamiltonian Case
-
G. Haller and S. Wiggins. Orbits Homoclinic to Resonances: The Hamiltonian Case, Physica D, 66:298-346, 1993.
-
(1993)
Physica D
, vol.66
, pp. 298-346
-
-
Haller, G.1
Wiggins, S.2
-
11
-
-
0001441740
-
Invariant Manifolds
-
Springer-Verlag, New York
-
M. W. Hirsch, C. C. Pugh, and M. Shub. Invariant Manifolds. Lecture Notes in Mathematics: 583, Springer-Verlag, New York, 1977.
-
(1977)
Lecture Notes in Mathematics
, pp. 583
-
-
Hirsch, M.W.1
Pugh, C.C.2
Shub, M.3
-
12
-
-
0002316532
-
Geometric Singular Perturbation Theory
-
R. Johnson, editor, Dynamical Systems, New York, Springer-Verlag
-
C. K. R. T. Jones. Geometric Singular Perturbation Theory. In R. Johnson, editor, Dynamical Systems, Lecture Notes in Mathematics, vol. 1609, pages 93-160, New York, 1995, Springer-Verlag.
-
(1995)
Lecture Notes in Mathematics
, vol.1609
, pp. 93-160
-
-
Jones, C.K.R.T.1
-
13
-
-
0001748889
-
The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds
-
A. Kelley. The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds. J. Diff. Equations, 3:547-570, 1967.
-
(1967)
J. Diff. Equations
, vol.3
, pp. 547-570
-
-
Kelley, A.1
-
15
-
-
0002307231
-
Orbits Homoclinic to Resonances, with an Application to Chaos in a Model of the Forced and Damped Sine-Gordon Equation
-
G. Kovacic and S. Wiggins. Orbits Homoclinic to Resonances, with an Application to Chaos in a Model of the Forced and Damped Sine-Gordon Equation. Physica D, 57:185-225, 1992.
-
(1992)
Physica D
, vol.57
, pp. 185-225
-
-
Kovacic, G.1
Wiggins, S.2
-
16
-
-
0010566817
-
Backlund Transformations and Homoclinic Structures for the Integrable Discretization of the NLS Equation
-
Y. Li. Backlund Transformations and Homoclinic Structures for the Integrable Discretization of the NLS Equation. Phys. Letters A, 163:181-187, 1992.
-
(1992)
Phys. Letters A
, vol.163
, pp. 181-187
-
-
Li, Y.1
-
19
-
-
0040782253
-
Homoclinic Orbits and Backlund Transformations for the Doubly Periodic Davey-Stewartson Equation
-
Nonlinear Processes in Physics
-
Y. Li and D. W. McLaughlin. Homoclinic Orbits and Backlund Transformations for the Doubly Periodic Davey-Stewartson Equation. Nonlinear Processes in Physics, Proceedings of the III Potsdam - V Kiev Workshop at Clarkson University, Potsdam, NY, 122-125, 1993.
-
(1993)
Proceedings of the III Potsdam - V Kiev Workshop at Clarkson University, Potsdam, NY
, pp. 122-125
-
-
Li, Y.1
McLaughlin, D.W.2
-
20
-
-
34249767027
-
Morse and Melnikov Functions for NLS Pde's
-
Y. Li and D. W. McLaughlin. Morse and Melnikov Functions for NLS Pde's. Commun. Math. Phys., 162:175-214, 1994.
-
(1994)
Commun. Math. Phys.
, vol.162
, pp. 175-214
-
-
Li, Y.1
McLaughlin, D.W.2
-
21
-
-
85033141126
-
Smale Horseshoes and Chaos in Discrete NLS Systems
-
to appear
-
Y. Li and S. Wiggins. Smale Horseshoes and Chaos in Discrete NLS Systems. Journal of Nonlinear Science, to appear.
-
Journal of Nonlinear Science
-
-
Li, Y.1
Wiggins, S.2
-
22
-
-
0002063004
-
Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes
-
D. W. McLaughlin and E. A. Overman. Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes. Surveys in Appl. Math. 1, 83-203, 1993.
-
(1993)
Surveys in Appl. Math.
, vol.1
, pp. 83-203
-
-
McLaughlin, D.W.1
Overman, E.A.2
-
23
-
-
0000038096
-
Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation
-
D. W. McLaughlin, E. A. Overman, S. Wiggins, and C. Xiong. Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation. Dynamics Reported, vol. 5, 190-287, 1996.
-
(1996)
Dynamics Reported
, vol.5
, pp. 190-287
-
-
McLaughlin, D.W.1
Overman, E.A.2
Wiggins, S.3
Xiong, C.4
|