메뉴 건너뛰기




Volumn 7, Issue 3, 1997, Pages 211-269

Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits

Author keywords

Discrete nonlinear Schroedinger equation; Fenichel fibers; Homoclinic orbits; Melnikov analysis; Persistent invariant manifolds; Spectral theory

Indexed keywords


EID: 0000038726     PISSN: 09388974     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02678088     Document Type: Article
Times cited : (36)

References (24)
  • 1
    • 0016992794 scopus 로고
    • A Nonlinear Difference Scheme and Inverse Scattering
    • M. J. Ablowitz and J. F. Ladik. A Nonlinear Difference Scheme and Inverse Scattering. Stud. Appl. Math., 55:213, 1976.
    • (1976) Stud. Appl. Math. , vol.55 , pp. 213
    • Ablowitz, M.J.1    Ladik, J.F.2
  • 2
    • 0000593885 scopus 로고
    • Correlations between Chaos in a Perturbed Sine-Gordon Equation and a Truncated Model System
    • A. R. Bishop, R. Flesch, M. G. Forest, D. W. McLaughlin, and E. A. Overman II. Correlations between Chaos in a Perturbed Sine-Gordon Equation and a Truncated Model System. SIAM J. Math. Anal., 1511-1536, 1990.
    • (1990) SIAM J. Math. Anal. , pp. 1511-1536
    • Bishop, A.R.1    Flesch, R.2    Forest, M.G.3    McLaughlin, D.W.4    Overman E.A. II5
  • 3
    • 0002647995 scopus 로고
    • A Model Representation of Chaotic Attractors for the Damped Driven Pendulum Chain
    • A. R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman II. A Model Representation of Chaotic Attractors for the Damped Driven Pendulum Chain. Phys. Lett. A, 17-25, 1990.
    • (1990) Phys. Lett. A , pp. 17-25
    • Bishop, A.R.1    Forest, M.G.2    McLaughlin, D.W.3    Overman E.A. II4
  • 4
    • 0001356311 scopus 로고
    • Persistence and Smoothness of Invariant Manifolds for Flows
    • N. Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows. Ind. University Math. J., 21:193-225, 1971.
    • (1971) Ind. University Math. J. , vol.21 , pp. 193-225
    • Fenichel, N.1
  • 5
    • 0016070051 scopus 로고
    • Asymptotic Stability with Rate Conditions
    • N. Fenichel. Asymptotic Stability with Rate Conditions. Ind. Univ. Math. J., 23:1109-1137, 1974.
    • (1974) Ind. Univ. Math. J. , vol.23 , pp. 1109-1137
    • Fenichel, N.1
  • 6
    • 0001957566 scopus 로고
    • Asymptotic Stability with Rate Conditions
    • N. Fenichel. Asymptotic Stability with Rate Conditions. Ind. Univ. Math. J., 26:81, 1977.
    • (1977) Ind. Univ. Math. J. , vol.26 , pp. 81
    • Fenichel, N.1
  • 7
    • 34250627892 scopus 로고
    • Geometric Singular Perturbation Theory for Ordinary Differential Equations
    • N. Fenichel. Geometric Singular Perturbation Theory for Ordinary Differential Equations. J. Diff. Eqns., 31:53-98, 1979.
    • (1979) J. Diff. Eqns. , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 8
    • 0000962873 scopus 로고
    • Sur Literation et les Solution Asymptotiques des Equations Differentielles
    • J. Hadamard. Sur Literation et les Solution Asymptotiques des Equations Differentielles. Bull. Soc. Math. France, 29, 1901.
    • (1901) Bull. Soc. Math. France , vol.29
    • Hadamard, J.1
  • 10
    • 0008495183 scopus 로고
    • Orbits Homoclinic to Resonances: The Hamiltonian Case
    • G. Haller and S. Wiggins. Orbits Homoclinic to Resonances: The Hamiltonian Case, Physica D, 66:298-346, 1993.
    • (1993) Physica D , vol.66 , pp. 298-346
    • Haller, G.1    Wiggins, S.2
  • 12
    • 0002316532 scopus 로고
    • Geometric Singular Perturbation Theory
    • R. Johnson, editor, Dynamical Systems, New York, Springer-Verlag
    • C. K. R. T. Jones. Geometric Singular Perturbation Theory. In R. Johnson, editor, Dynamical Systems, Lecture Notes in Mathematics, vol. 1609, pages 93-160, New York, 1995, Springer-Verlag.
    • (1995) Lecture Notes in Mathematics , vol.1609 , pp. 93-160
    • Jones, C.K.R.T.1
  • 13
    • 0001748889 scopus 로고
    • The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds
    • A. Kelley. The Stable, Center-Stable, Center, Center-Unstable, Unstable Manifolds. J. Diff. Equations, 3:547-570, 1967.
    • (1967) J. Diff. Equations , vol.3 , pp. 547-570
    • Kelley, A.1
  • 15
    • 0002307231 scopus 로고
    • Orbits Homoclinic to Resonances, with an Application to Chaos in a Model of the Forced and Damped Sine-Gordon Equation
    • G. Kovacic and S. Wiggins. Orbits Homoclinic to Resonances, with an Application to Chaos in a Model of the Forced and Damped Sine-Gordon Equation. Physica D, 57:185-225, 1992.
    • (1992) Physica D , vol.57 , pp. 185-225
    • Kovacic, G.1    Wiggins, S.2
  • 16
    • 0010566817 scopus 로고
    • Backlund Transformations and Homoclinic Structures for the Integrable Discretization of the NLS Equation
    • Y. Li. Backlund Transformations and Homoclinic Structures for the Integrable Discretization of the NLS Equation. Phys. Letters A, 163:181-187, 1992.
    • (1992) Phys. Letters A , vol.163 , pp. 181-187
    • Li, Y.1
  • 20
    • 34249767027 scopus 로고
    • Morse and Melnikov Functions for NLS Pde's
    • Y. Li and D. W. McLaughlin. Morse and Melnikov Functions for NLS Pde's. Commun. Math. Phys., 162:175-214, 1994.
    • (1994) Commun. Math. Phys. , vol.162 , pp. 175-214
    • Li, Y.1    McLaughlin, D.W.2
  • 21
    • 85033141126 scopus 로고    scopus 로고
    • Smale Horseshoes and Chaos in Discrete NLS Systems
    • to appear
    • Y. Li and S. Wiggins. Smale Horseshoes and Chaos in Discrete NLS Systems. Journal of Nonlinear Science, to appear.
    • Journal of Nonlinear Science
    • Li, Y.1    Wiggins, S.2
  • 22
    • 0002063004 scopus 로고
    • Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes
    • D. W. McLaughlin and E. A. Overman. Whiskered Tori for Integrable Pdes and Chaotic Behavior in Near Integrable Pdes. Surveys in Appl. Math. 1, 83-203, 1993.
    • (1993) Surveys in Appl. Math. , vol.1 , pp. 83-203
    • McLaughlin, D.W.1    Overman, E.A.2
  • 23
    • 0000038096 scopus 로고    scopus 로고
    • Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation
    • D. W. McLaughlin, E. A. Overman, S. Wiggins, and C. Xiong. Homoclinic Orbits in a Four Dimensional Model of a Perturbed NLS Equation. Dynamics Reported, vol. 5, 190-287, 1996.
    • (1996) Dynamics Reported , vol.5 , pp. 190-287
    • McLaughlin, D.W.1    Overman, E.A.2    Wiggins, S.3    Xiong, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.