-
12
-
-
0011922961
-
-
S. Lorenz, C. Solterbeck, W. Schattke, J. Burmeister, and W. Hackbusch, Phys. Rev. B 55, R13 432 (1997).
-
(1997)
Phys. Rev. B
, vol.55
-
-
Lorenz, S.1
Solterbeck, C.2
Schattke, W.3
Burmeister, J.4
Hackbusch, W.5
-
17
-
-
0037091644
-
-
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165401
-
-
Brandbyge, M.1
Mozos, J.-L.2
Ordejón, P.3
Taylor, J.4
Stokbro, K.5
-
19
-
-
1442263798
-
-
A. Calzolari, N. Marzari, I. Souza, and M. Buongiorno Nardelli, Phys. Rev. B 69, 035108 (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 035108
-
-
Calzolari, A.1
Marzari, N.2
Souza, I.3
Buongiorno Nardelli, M.4
-
20
-
-
0000735882
-
-
J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, Phys. Rev. B 59, 5470 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 5470
-
-
MacLaren, J.M.1
Zhang, X.-G.2
Butler, W.H.3
Wang, X.4
-
21
-
-
0037109998
-
-
N. Papanikolaou, J. Opitz, P. Zahn, and I. Mertig, Phys. Rev. B 66, 165441 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 165441
-
-
Papanikolaou, N.1
Opitz, J.2
Zahn, P.3
Mertig, I.4
-
28
-
-
0037091864
-
-
D. Wortmann, H. Ishida, and S. Blügel, Phys. Rev, B 65, 165103 (2002).
-
(2002)
Phys. Rev, B
, vol.65
, pp. 165103
-
-
Wortmann, D.1
Ishida, H.2
Blügel, S.3
-
35
-
-
35949018705
-
-
Alternatively, the boundary conditions of an isolated slab may be imposed, see, e.g., E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
-
(1981)
Phys. Rev. B
, vol.24
, pp. 864
-
-
Wimmer, E.1
Krakauer, H.2
Weinert, M.3
Freeman, A.J.4
-
36
-
-
14944359303
-
-
note
-
To calculate integrals similar to those of Eq. (10) out of an APW representation, Stiles and Hamann (Ref. 26) expanded the step function of cut muffin-tins in an angular momentum series, and Wachutka (Ref. 24) and Hummel and Brass (Ref. 25) simply reduced the muffin-tin radii in order to be able to use the plane-wave representation of the wave functions outside the muffin-tins. To introduce the boundary values, Stiles and Hamann (Ref. 26) generated the values on a real space mesh and then used an FFT procedure to get a 2D reciprocal lattice expansion. An alternative technique was used by Ishida (Ref. 27) who introduced a buffer region between a curvy matching surface and an artificial planar surface and defined the boundary conditions on the planar surface by integrating the Schrödinger equation in the buffer region.
-
-
-
-
37
-
-
0000353141
-
-
The application of the local γ transformation to the representation of the crystal density in self-consistent calculations has been introduced in E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59, 10 504 (1999) and to the calculation of the dielectric matrix in E. E. Rrasovskii and W. Schattke, ibid. 60, R16 251 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 10504
-
-
Krasovskii, E.E.1
Starrost, F.2
Schattke, W.3
-
38
-
-
0000426081
-
-
The application of the local γ transformation to the representation of the crystal density in self-consistent calculations has been introduced in E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59, 10 504 (1999) and to the calculation of the dielectric matrix in E. E. Rrasovskii and W. Schattke, ibid. 60, R16 251 (1999).
-
(1999)
Phys. Rev. B
, vol.60
-
-
Rrasovskii, E.E.1
Schattke, W.2
-
41
-
-
0034884399
-
-
V. N. Strocov, R. Claessen, G. Nicolay, S. Hüfner, A. Kimura, A. Harasawa, S. Shin, A. Kakizaki, H. I. Starnberg, P. O. Nilsson, and P. Blaha, Phys. Rev. B 63, 205108 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 205108
-
-
Strocov, V.N.1
Claessen, R.2
Nicolay, G.3
Hüfner, S.4
Kimura, A.5
Harasawa, A.6
Shin, S.7
Kakizaki, A.8
Starnberg, H.I.9
Nilsson, P.O.10
Blaha, P.11
-
42
-
-
0037737391
-
-
E. E. Krasovskii, W. Schattke, V. N. Strocov, and R. Claessen, Phys. Rev. B 66, 235403 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 235403
-
-
Krasovskii, E.E.1
Schattke, W.2
Strocov, V.N.3
Claessen, R.4
|