-
1
-
-
0035827304
-
-
Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
-
(2001)
Science
, vol.292
, pp. 1897
-
-
Huang, M.H.1
Mao, S.2
Feick, H.3
Yan, H.4
Wu, Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.9
-
3
-
-
0037285167
-
-
Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Adv. Funct. Mater. 2003, 13, 9.
-
(2003)
Adv. Funct. Mater.
, vol.13
, pp. 9
-
-
Dai, Z.R.1
Pan, Z.W.2
Wang, Z.L.3
-
4
-
-
0037464234
-
-
(a) Chia, C. H.; Makino, T.; Tamura, K.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. Appl. Phys. Lett. 2003, 82, 1848.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 1848
-
-
Chia, C.H.1
Makino, T.2
Tamura, K.3
Segawa, Y.4
Kawasaki, M.5
Ohtomo, A.6
Koinuma, H.7
-
5
-
-
0037126792
-
-
(b) Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J. Adv. Mater. 2002, 14, 1841.
-
(2002)
Adv. Mater.
, vol.14
, pp. 1841
-
-
Park, W.I.1
Yi, G.C.2
Kim, M.3
Pennycook, S.J.4
-
6
-
-
0036575748
-
-
(c) Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. Adv. Funct. Mater. 2002, 12, 323.
-
(2002)
Adv. Funct. Mater.
, vol.12
, pp. 323
-
-
Yang, P.1
Yan, H.2
Mao, S.3
Russo, R.4
Johnson, J.5
Saykally, R.6
Morris, N.7
Pham, J.8
He, R.9
Choi, H.10
-
7
-
-
79958197085
-
-
(d) Yao, B. D.; Chan, Y. F.; Wang, N. Appl. Phys. Lett. 2002, 81, 757.
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 757
-
-
Yao, B.D.1
Chan, Y.F.2
Wang, N.3
-
10
-
-
0037006865
-
-
(c) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem., Int. Ed. 2002, 41, 1188.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 1188
-
-
Pacholski, C.1
Kornowski, A.2
Weller, H.3
-
11
-
-
0037132604
-
-
(d) Guo, L.; Ji, Y. L.; Xu, H.; Simon, P.; Wu, Z. J. Am. Chem. Soc. 2002, 124, 14864.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 14864
-
-
Guo, L.1
Ji, Y.L.2
Xu, H.3
Simon, P.4
Wu, Z.5
-
12
-
-
0036800487
-
-
(e) Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H. Chem. Mater. 2002, 14, 4172.
-
(2002)
Chem. Mater.
, vol.14
, pp. 4172
-
-
Zhang, J.1
Sun, L.D.2
Yin, J.L.3
Su, H.L.4
Liao, C.S.5
Yan, C.H.6
-
13
-
-
0347760121
-
-
(f) Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 62.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 62
-
-
Feng, X.1
Feng, L.2
Jin, M.3
Zhai, J.4
Jiang, L.5
Zhu, D.6
-
14
-
-
0037013372
-
-
(g) Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3350.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 3350
-
-
Vayssieres, L.1
Keis, K.2
Lindquist, S.-E.3
Hagfeldt, A.4
-
15
-
-
0344875971
-
-
(a) Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821.
-
(2003)
Nat. Mater.
, vol.2
, pp. 821
-
-
Tian, Z.R.1
Voigt, J.A.2
Liu, J.3
Mckenzie, B.4
Mcdermott, M.J.5
Rodriguez, M.A.6
Konishi, H.7
Xu, H.8
-
16
-
-
0041305911
-
-
(b) Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem., Int. Ed. 2003, 42, 3031.
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 3031
-
-
Greene, L.E.1
Law, M.2
Goldberger, J.3
Kim, F.4
Johson, J.C.5
Zhang, Y.6
Saykally, R.J.7
Yang, P.8
-
17
-
-
2942706231
-
-
(c) Peterson, R. B.; Fields, C. L.; Gregg, B. A. Langmuir 2004, 20, 5114.
-
(2004)
Langmuir
, vol.20
, pp. 5114
-
-
Peterson, R.B.1
Fields, C.L.2
Gregg, B.A.3
-
18
-
-
0348220799
-
-
Choy, J. H.; Jang, E. S.; Won, J. Chung, J. H.; Jang, D. J.; Kim, Y. W. Adv. Mater. 2003, 15, 1911.
-
(2003)
Adv. Mater.
, vol.15
, pp. 1911
-
-
Choy, J.H.1
Jang, E.S.2
Won, J.3
Chung, J.H.4
Jang, D.J.5
Kim, Y.W.6
-
20
-
-
0037034687
-
-
(b) Hao, X. T.; Ma, J.; Zhang, D. H.; Yang, Y. G.; Ma, H. L.; Cheng, C. F.; Liu, X. D. Mater. Sci. Eng. B 2002, 90, 50.
-
(2002)
Mater. Sci. Eng. B
, vol.90
, pp. 50
-
-
Hao, X.T.1
Ma, J.2
Zhang, D.H.3
Yang, Y.G.4
Ma, H.L.5
Cheng, C.F.6
Liu, X.D.7
-
21
-
-
14744276458
-
-
note
-
The oxidation of metal zinc by naturally dissolved oxygen is very slow in water due to the surface-passivated oxide layer. However, in the presence of formamide, the spontaneous atmospheric oxidation process can be accelerated at room temperature to release zinc ions into reaction solution through the formation of zinc-formamide complexes. More zinc-formamide complexes can be supplied continuously at an elevated temperature. At an optimized temperature of 65 °C in 5% formamide aqueous solution, high-quality ZnO nanoarrays can be produced readily by this simple chemical-liquid-deposition approach during a period of 24 h of reaction. In the temporal evolution of zinc oxidation, zinc concentration increased proportionally with reaction time due to the continuous release of zinc ions into solution, and Zn complexes can be accumulated up to 0.46 mM gradually after 24 h in our preparation system. Freshly produced Zn ions can be supplied continuously for the subsequent crystal growth of nanorods on the seed particles through the thermal decomposition of the resulting zinc-formamide complexes.
-
-
-
-
23
-
-
0035676915
-
-
Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Chem. Mater. 2001, 13, 4395.
-
(2001)
Chem. Mater.
, vol.13
, pp. 4395
-
-
Vayssieres, L.1
Keis, K.2
Hagfeldt, A.3
Lindquist, S.E.4
|