메뉴 건너뛰기




Volumn 59, Issue 1, 2005, Pages 30-37

Prediction of protein relative solvent accessibility with a two-stage SVM approach

Author keywords

Protein structure prediction; PSI BLAST; Solvent accessibility; Support vector machines

Indexed keywords

AMINO ACID; GLOBULAR PROTEIN; SOLVENT;

EID: 14644440766     PISSN: 08873585     EISSN: None     Source Type: Journal    
DOI: 10.1002/prot.20404     Document Type: Article
Times cited : (57)

References (32)
  • 2
    • 0033562880 scopus 로고    scopus 로고
    • New methods for accurate prediction of protein secondary structure
    • Chandonia J, Karplus M. New methods for accurate prediction of protein secondary structure. Protein Eng 1999;35:293-306.
    • (1999) Protein Eng , vol.35 , pp. 293-306
    • Chandonia, J.1    Karplus, M.2
  • 3
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994;20:216-226.
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 4
    • 0023338543 scopus 로고
    • Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides
    • Ooi T, Oobatake M, Nemethy G, Scheraga HA. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci USA 1987;84:3086-3090.
    • (1987) Proc Natl Acad Sci USA , vol.84 , pp. 3086-3090
    • Ooi, T.1    Oobatake, M.2    Nemethy, G.3    Scheraga, H.A.4
  • 5
    • 0025150383 scopus 로고
    • Origins of structure in globular proteins
    • Chan HS, Dill KA. Origins of structure in globular proteins. Proc Natl Acad Sci USA 1990;87:6388-6392.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 6388-6392
    • Chan, H.S.1    Dill, K.A.2
  • 6
    • 0031912107 scopus 로고    scopus 로고
    • Prediction of water-binding sites on proteins using neural networks
    • Ehrlich L, Reczko M, Bohr H, Wade RC. Prediction of water-binding sites on proteins using neural networks. Protein Eng 1998;11:11-19.
    • (1998) Protein Eng , vol.11 , pp. 11-19
    • Ehrlich, L.1    Reczko, M.2    Bohr, H.3    Wade, R.C.4
  • 7
    • 0032548904 scopus 로고    scopus 로고
    • Adaptation of protein surfaces to subcellular location
    • Andrade MA, O'Donoghue SI, Rost B. Adaptation of protein surfaces to subcellular location. J Mol Biol 1998;276:517-525.
    • (1998) J Mol Biol , vol.276 , pp. 517-525
    • Andrade, M.A.1    O'Donoghue, S.I.2    Rost, B.3
  • 8
    • 14644435895 scopus 로고    scopus 로고
    • Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes
    • Thompson MJ, Goldstein RA. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes. Proteins 1996;47:142-153.
    • (1996) Proteins , vol.47 , pp. 142-153
    • Thompson, M.J.1    Goldstein, R.A.2
  • 9
    • 0032147008 scopus 로고    scopus 로고
    • Easy method to predict solvent accessibility from multiple protein sequence alignments
    • Pascarella S, Persio RD, Bossa F, Argos P. Easy method to predict solvent accessibility from multiple protein sequence alignments. Proteins 1999;32:190-199.
    • (1999) Proteins , vol.32 , pp. 190-199
    • Pascarella, S.1    Persio, R.D.2    Bossa, F.3    Argos, P.4
  • 10
    • 0035189668 scopus 로고    scopus 로고
    • New method for accurate prediction of solvent accessibility from protein sequence
    • Li X, Pan XM. New method for accurate prediction of solvent accessibility from protein sequence. Proteins 2001;42:1-5.
    • (2001) Proteins , vol.42 , pp. 1-5
    • Li, X.1    Pan, X.M.2
  • 11
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002;47:142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 12
    • 0036303121 scopus 로고    scopus 로고
    • NETASA: Neural network based prediction of solvent accessibility
    • Ahmad S, Gromiha MM. NETASA: neural network based prediction of solvent accessibility. Bioinformatics 2002;18:819-824.
    • (2002) Bioinformatics , vol.18 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 13
    • 0035283141 scopus 로고    scopus 로고
    • Predicting of protein surface accessibility with information theory
    • Naderi-Manesh H, Sadeghi M, Araf S, Movahedi AAM. Predicting of protein surface accessibility with information theory. Proteins 2001;42:452-459.
    • (2001) Proteins , vol.42 , pp. 452-459
    • Naderi-Manesh, H.1    Sadeghi, M.2    Araf, S.3    Movahedi, A.A.M.4
  • 14
    • 1442310611 scopus 로고    scopus 로고
    • Improvement in prediction of solvent accessibility by probability profiles
    • Gianese G, Bossa F, Pascarella S. Improvement in prediction of solvent accessibility by probability profiles. Protein Eng 2003;16:987-992.
    • (2003) Protein Eng , vol.16 , pp. 987-992
    • Gianese, G.1    Bossa, F.2    Pascarella, S.3
  • 15
    • 4043052866 scopus 로고    scopus 로고
    • Accurate prediction of solvent accessibility using neural networks based regression
    • Adamczak R, Porollo A, Meller J. Accurate prediction of solvent accessibility using neural networks based regression. Proteins 2004;56:753-767.
    • (2004) Proteins , vol.56 , pp. 753-767
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 17
    • 0037103004 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using support vector machines
    • Yuan Z, Burrage K, Mattick J. Prediction of protein solvent accessibility using support vector machines. Proteins 2002;48:566-570.
    • (2002) Proteins , vol.48 , pp. 566-570
    • Yuan, Z.1    Burrage, K.2    Mattick, J.3
  • 18
    • 1042268067 scopus 로고    scopus 로고
    • Prediction of protein relative solvent accessibility with support vector machines
    • Kim H, Park H. Prediction of protein relative solvent accessibility with support vector machines. Proteins 2004;54:557-562.
    • (2004) Proteins , vol.54 , pp. 557-562
    • Kim, H.1    Park, H.2
  • 21
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 22
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 23
    • 84913591509 scopus 로고
    • Improved strategy in analytical surface calculation for molecular systems-handling of singularities and computational efficiency
    • Eisenhaber F, Argos P. Improved strategy in analytical surface calculation for molecular systems-handling of singularities and computational efficiency. J Comp Chem 1993;14:1272-1280.
    • (1993) J Comp Chem , vol.14 , pp. 1272-1280
    • Eisenhaber, F.1    Argos, P.2
  • 25
    • 14644405081 scopus 로고    scopus 로고
    • Two-stage support vector machines for protein secondary structure prediction
    • Nguyen MN, Rajapakse JC. Two-stage support vector machines for protein secondary structure prediction. Neural Parallel Sci Comput 2003;11:1-18.
    • (2003) Neural Parallel Sci Comput , vol.11 , pp. 1-18
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 26
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • Guo J, Chen H, Sun Z, Lin Y. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins 2004;54:738-743.
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 28
    • 84898983292 scopus 로고    scopus 로고
    • Using analytic QP and sparseness to speed training of support vector machines
    • Kearns MS, Solla SA, Cohn A, editors. Cambridge, MA: MIT Press
    • Platt JC. Using analytic QP and sparseness to speed training of support vector machines. In: Kearns MS, Solla SA, Cohn A, editors. Advances in neural information processing systems 11. Cambridge, MA: MIT Press; 1999. p 557-563.
    • (1999) Advances in Neural Information Processing Systems 11 , pp. 557-563
    • Platt, J.C.1
  • 29
    • 0033049071 scopus 로고    scopus 로고
    • PredAcc: Prediction of solvent accessibility
    • Giorgi MHM, Hazout S, Tuffery P. PredAcc: prediction of solvent accessibility. Bioinformatics 1999;15:176-177.
    • (1999) Bioinformatics , vol.15 , pp. 176-177
    • Giorgi, M.H.M.1    Hazout, S.2    Tuffery, P.3
  • 30
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000;40:502-511.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 32
    • 33645442660 scopus 로고    scopus 로고
    • Classification comparison of prediction of solvent accessibility from protein sequences
    • Paper presented, Dunedin, New Zealand
    • Chen H, Zho HX, Hu X, Yoo I. Classification comparison of prediction of solvent accessibility from protein sequences. Paper presented at the 2nd Asia-Pacific Bioinformatics Conference, Dunedin, New Zealand: 2004.
    • (2004) 2nd Asia-Pacific Bioinformatics Conference
    • Chen, H.1    Zho, H.X.2    Hu, X.3    Yoo, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.