메뉴 건너뛰기




Volumn 94, Issue 1, 2005, Pages 196-208

Density estimation by the penalized combinatorial method

Author keywords

Mixture densities; Multivariate density estimation; Penalization; Vapnik Chervonenkis dimension

Indexed keywords


EID: 14644399896     PISSN: 0047259X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmva.2004.04.011     Document Type: Article
Times cited : (12)

References (49)
  • 1
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • G. Roussas (Ed.), NATO ASI Series, Kluwer Academic Publishers, Dordrecht
    • A. Barron, Complexity regularization with application to artificial neural networks, in: G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, 1991, pp. 501-576.
    • (1991) Nonparametric Functional Estimation and Related Topics , pp. 501-576
    • Barron, A.1
  • 3
    • 0000404653 scopus 로고
    • Approximation of density functions by sequences of exponential families
    • Barron A.R. Sheu C.H. Approximation of density functions by sequences of exponential families Ann. Statist. 19 1991 1347-1369
    • (1991) Ann. Statist. , vol.19 , pp. 1347-1369
    • Barron, A.R.1    Sheu, C.H.2
  • 6
    • 0004113976 scopus 로고
    • Mixture density networks
    • Neural Computing Research Group Report NCRG/94/004, Department of Computer Science and Applied Mathematics, Aston University, Birmingham
    • C.L. Bishop, Mixture density networks, Neural Computing Research Group Report NCRG/94/004, Department of Computer Science and Applied Mathematics, Aston University, Birmingham, 1994.
    • (1994)
    • Bishop, C.L.1
  • 7
    • 0742306054 scopus 로고    scopus 로고
    • A note on penalized minimum distance estimation in nonparametric regression
    • Bunea F. Wegkamp M. A note on penalized minimum distance estimation in nonparametric regression Canad. J. Statist. 31 2003 267-274
    • (2003) Canad. J. Statist. , vol.31 , pp. 267-274
    • Bunea, F.1    Wegkamp, M.2
  • 8
    • 0034654759 scopus 로고    scopus 로고
    • Sélection d'histogrammes à l'aide d'un critère de type Akaike
    • Castellan G. Sélection d'histogrammes à l'aide d'un critère de type Akaike C. R. Acad. Sci. Paris 330 2000 729-732
    • (2000) C. R. Acad. Sci. Paris , vol.330 , pp. 729-732
    • Castellan, G.1
  • 9
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G. Hurn M. Robert C.P. Computational and inferential difficulties with mixture posterior distributions J. Amer. Statist. Assoc. 95 2000 957-970
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 10
    • 84996128633 scopus 로고    scopus 로고
    • Testing in locally conic models, and application to mixture models
    • Dacunha-Castelle D. Gassiat E. Testing in locally conic models, and application to mixture models ESAIM: Probab. Statist. 1 1997 285-317
    • (1997) ESAIM: Probab. Statist. , vol.1 , pp. 285-317
    • Dacunha-Castelle, D.1    Gassiat, E.2
  • 11
    • 85132185883 scopus 로고    scopus 로고
    • The estimation of the order of a mixture model
    • Dacunha-Castelle D. Gassiat E. The estimation of the order of a mixture model Bernoulli 3 1997 279-299
    • (1997) Bernoulli , vol.3 , pp. 279-299
    • Dacunha-Castelle, D.1    Gassiat, E.2
  • 12
    • 0033236920 scopus 로고    scopus 로고
    • Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes
    • Dacunha-Castelle D. Gassiat E. Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes Ann. Statist. 27 1999 1178-1209
    • (1999) Ann. Statist. , vol.27 , pp. 1178-1209
    • Dacunha-Castelle, D.1    Gassiat, E.2
  • 14
    • 0001791608 scopus 로고    scopus 로고
    • Universal smoothing factor selection in density estimation: Theory and practice
    • (with discussion)
    • Devroye L. Universal smoothing factor selection in density estimation: theory and practice (with discussion) Test 6 1997 223-320
    • (1997) Test , vol.6 , pp. 223-320
    • Devroye, L.1
  • 17
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt J. Robert C.P. Estimation of finite mixture distributions through Bayesian sampling J. Roy. Statist. Soc. Ser. B 56 1994 363-375
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 18
    • 0000421687 scopus 로고
    • Central limit theorems for empirical measures
    • Dudley R.M. Central limit theorems for empirical measures Ann. Probab. 6 1978 899-929
    • (1978) Ann. Probab. , vol.6 , pp. 899-929
    • Dudley, R.M.1
  • 23
    • 0042311289 scopus 로고    scopus 로고
    • Likelihood ratio of unidentifiable models and multilayer neural networks
    • Fukumizu K. Likelihood ratio of unidentifiable models and multilayer neural networks Ann. Statist. 31 2003 833-851
    • (2003) Ann. Statist. , vol.31 , pp. 833-851
    • Fukumizu, K.1
  • 28
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan M.I. Jacobs R.A. Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6 1994 181-214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 29
    • 0039396403 scopus 로고    scopus 로고
    • Nonparametric regression function estimation using interaction least squares splines and complexity regularization
    • Kohler M. Nonparametric regression function estimation using interaction least squares splines and complexity regularization Metrika 47 1998 147-163
    • (1998) Metrika , vol.47 , pp. 147-163
    • Kohler, M.1
  • 30
    • 0032022221 scopus 로고    scopus 로고
    • Radial basis function networks and complexity regularization in function learning
    • Krzyzak A. Linder T. Radial basis function networks and complexity regularization in function learning IEEE Trans. Neural Networks 9 1998 247-256
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 247-256
    • Krzyzak, A.1    Linder, T.2
  • 31
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • (with discussion)
    • Lugosi G. Vayatis N. On the Bayes-risk consistency of regularized boosting methods (with discussion) Ann. Statist. 32 2004 30-55
    • (2004) Ann. Statist. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 32
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • Massart P. Some applications of concentration inequalities to statistics Ann. Fac. Sci. Toulouse 9 2000 245-303
    • (2000) Ann. Fac. Sci. Toulouse , vol.9 , pp. 245-303
    • Massart, P.1
  • 33
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • J. Siemons (Ed.), Surveys in Combinatorics, Cambridge: Cambridge University Press
    • McDiarmid C. On the method of bounded differences in: Siemons J. (Ed.), Surveys in Combinatorics, London Math. Society Lecture Note Series 141 1989 148-188 Cambridge University Press Cambridge
    • (1989) London Math. Society Lecture Note Series , vol.141 , pp. 148-188
    • McDiarmid, C.1
  • 37
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R.A. Walker H.F. Mixture densities, maximum likelihood and the EM algorithm SIAM Rev. 26 1984 195-239
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 38
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson S. Green P.J. On Bayesian analysis of mixtures with an unknown number of components J. Roy. Statist. Soc. Ser. B 59 1997 731-792
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 39
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder K. Wasserman L. Practical Bayesian density estimation using mixtures of normals J. Amer. Statist. Assoc. 92 1997 894-902
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 40
    • 1842552752 scopus 로고    scopus 로고
    • A procedure for model complexity selection in semiparametric mixture model density estimation
    • Technical Report, Naval Surface Warfare Center, Dahlgren Division, Virginia
    • G.W. Rogers, D.J. Marchette, C.E. Priebe, A procedure for model complexity selection in semiparametric mixture model density estimation, Technical Report, Naval Surface Warfare Center, Dahlgren Division, Virginia, 2002.
    • (2002)
    • Rogers, G.W.1    Marchette, D.J.2    Priebe, C.E.3
  • 42
    • 0000645875 scopus 로고
    • Large sample inference for log-spline models
    • Stone C.J. Large sample inference for log-spline models Ann. Statist. 18 1990 717-741
    • (1990) Ann. Statist. , vol.18 , pp. 717-741
    • Stone, C.J.1
  • 46
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik V.N. Chervonenkis A.Ya. On the uniform convergence of relative frequencies of events to their probabilities Theory Probab. Appl. 16 1971 264-280
    • (1971) Theory Probab. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 47
    • 0004272441 scopus 로고
    • Nauka, Moscow (in Russian); Theorie der Zeichenerkennung, Akademie Verlag, Berlin 1979 (in German translation)
    • V.N. Vapnik, A.Ya. Chervonenkis, Theory of Pattern Recognition, Nauka, Moscow, 1974 (in Russian); Theorie der Zeichenerkennung, Akademie Verlag, Berlin, 1979 (German translation)
    • (1974) Theory of Pattern Recognition
    • Vapnik, V.N.1    Chervonenkis, A.Ya.2
  • 48
    • 0000643161 scopus 로고
    • Rates of convergence of minimum distance estimators and Kolmogorov's entropy
    • Yatracos Y.G. Rates of convergence of minimum distance estimators and Kolmogorov's entropy Ann. Statist. 13 1985 768-774
    • (1985) Ann. Statist. , vol.13 , pp. 768-774
    • Yatracos, Y.G.1
  • 49
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combinations of densities; approximation and estimation bounds
    • Zeevi A. Meir R. Density estimation through convex combinations of densities; approximation and estimation bounds Neural Networks 10 1997 90-109
    • (1997) Neural Networks , vol.10 , pp. 90-109
    • Zeevi, A.1    Meir, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.