메뉴 건너뛰기




Volumn 110, Issue 20, 1999, Pages 9793-9806

What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 13844305714     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.478032     Document Type: Article
Times cited : (61)

References (53)
  • 16
    • 85034502837 scopus 로고    scopus 로고
    • note
    • This transfer operator, T, is different from the pump-pump T-operator introduced recently in the context of optimal control of the pump-probe final state amplitude (see Refs. 15 and 16.)
  • 20
    • 36849135354 scopus 로고
    • We have previously referred to this as the classical Franck approximation, but henceforth adopt the more precise designation of M. Lax, J. Chem. Phys. 20, 1752 (1952).
    • (1952) J. Chem. Phys. , vol.20 , pp. 1752
    • Lax, M.1
  • 21
    • 85034516807 scopus 로고    scopus 로고
    • note
    • 2 (is the spatial width corresponding to the absorption width) and applying the previous inequality to the ground state wave function leads to (Equation Presented)
  • 26
    • 85034502966 scopus 로고    scopus 로고
    • note
    • -1.
  • 28
    • 85034504539 scopus 로고    scopus 로고
    • note
    • An alternative to D′ is the I*I* electronic potential energy surface, which would require a probe pulse with a center frequency in the visible region.
  • 29
    • 85034503220 scopus 로고    scopus 로고
    • note
    • -1 (see Ref. 27). The vertically resonant probe pulse would change slightly to λ≈235 nm.
  • 37
    • 2542643371 scopus 로고    scopus 로고
    • J. Phys. Chem. A 102, 2759 (1998).
    • (1998) J. Phys. Chem. A , vol.102 , pp. 2759
  • 47
    • 0003434416 scopus 로고
    • University Science, Mill Valley, California
    • A. E. Siegman, Lasers (University Science, Mill Valley, California, 1986).
    • (1986) Lasers
    • Siegman, A.E.1
  • 48
    • 85034500986 scopus 로고    scopus 로고
    • note
    • 2) in the "instantaneous frequency."
  • 51
    • 85034493992 scopus 로고    scopus 로고
    • note
    • 3, assuming N vibrational levels in each electronic state. The first term accounts for time evolution during pulse overlap. The second and third terms account for the making of the pump and probe time evolution operators and the application of these operators, respectively. The last term accounts for the excited-state time propagation. Thus, the nonperturbative approach has only minimal memory requirements, but is similarly computationally demanding to the first direct perturbative T-calculation method.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.