메뉴 건너뛰기




Volumn 17, Issue 3, 2005, Pages 715-729

On the capabilities of higher-order neurons: A radial basis function approach

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; NERVE CELL; PHYSIOLOGY;

EID: 13844298256     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053019953     Document Type: Article
Times cited : (10)

References (19)
  • 2
  • 3
    • 0013037041 scopus 로고    scopus 로고
    • Almost linear VC-dimension bounds for piecewise polynomial networks
    • Bartlett, P. L., Maiorov, V., & Meir, R. (1998). Almost linear VC-dimension bounds for piecewise polynomial networks. Neural Computation, 10, 2159-2173.
    • (1998) Neural Computation , vol.10 , pp. 2159-2173
    • Bartlett, P.L.1    Maiorov, V.2    Meir, R.3
  • 4
    • 0032156420 scopus 로고    scopus 로고
    • Localization vs. identification of semi-algebraic sets
    • Ben-David, S., & Lindenbaum, M. (1998). Localization vs. identification of semi-algebraic sets. Machine Learning, 32, 207-224.
    • (1998) Machine Learning , vol.32 , pp. 207-224
    • Ben-David, S.1    Lindenbaum, M.2
  • 5
    • 0000221271 scopus 로고
    • Product units: A computationally powerful and biologically plausible extension to backpropagation networks
    • Durbin, R., & Rumelhart, D. (1989). Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation, 1, 133-142.
    • (1989) Neural Computation , vol.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, D.2
  • 7
  • 9
    • 0031077292 scopus 로고    scopus 로고
    • Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks
    • Karpinski, M., & Macintyre, A. (1997). Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. Journal of Computer and System Sciences, 54, 169-176.
    • (1997) Journal of Computer and System Sciences , vol.54 , pp. 169-176
    • Karpinski, M.1    Macintyre, A.2
  • 10
    • 0027808119 scopus 로고
    • VC dimension and uniform learnability of sparse polynomials and rational functions
    • Karpinski, M., & Werther, T. (1993). VC dimension and uniform learnability of sparse polynomials and rational functions. SIAM Journal on Computing, 22, 1276-1285.
    • (1993) SIAM Journal on Computing , vol.22 , pp. 1276-1285
    • Karpinski, M.1    Werther, T.2
  • 12
    • 0040908412 scopus 로고
    • Lower bounds on the VC dimension of smoothly parameterized function classes
    • Lee, W. S., Bartlett, P. L., & Williamson, R. C. (1995). Lower bounds on the VC dimension of smoothly parameterized function classes. Neural Computation, 7, 1040-1053.
    • (1995) Neural Computation , vol.7 , pp. 1040-1053
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 13
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 14
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246-257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 15
    • 0040081674 scopus 로고    scopus 로고
    • Descartes' rule of signs for radial basis function neural networks
    • Schmitt, M. (2002a). Descartes' rule of signs for radial basis function neural networks. Neural Computation, 14, 2997-3011.
    • (2002) Neural Computation , vol.14 , pp. 2997-3011
    • Schmitt, M.1
  • 16
    • 0036551211 scopus 로고    scopus 로고
    • Neural networks with local receptive fields and superlinear VC dimension
    • Schmitt, M. (2002b). Neural networks with local receptive fields and superlinear VC dimension. Neural Computation, 14, 919-956.
    • (2002) Neural Computation , vol.14 , pp. 919-956
    • Schmitt, M.1
  • 17
    • 0036482614 scopus 로고    scopus 로고
    • On the complexity of computing and learning with multiplicative neural networks
    • Schmitt, M. (2002c). On the complexity of computing and learning with multiplicative neural networks. Neural Computation, 14, 241-301.
    • (2002) Neural Computation , vol.14 , pp. 241-301
    • Schmitt, M.1
  • 18
    • 1442352873 scopus 로고    scopus 로고
    • New designs for the Descartes rule of signs
    • Schmitt, M. (2004). New designs for the Descartes rule of signs. American Mathematical Monthly, 111, 159-164.
    • (2004) American Mathematical Monthly , vol.111 , pp. 159-164
    • Schmitt, M.1
  • 19
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.