-
2
-
-
4644327403
-
Vapnik-Chervonenkis dimension of neural nets
-
M. A. Arbib (Ed.). Cambridge, MA: MIT Press
-
Bartlett, P. L., & Maass, W. (2003). Vapnik-Chervonenkis dimension of neural nets. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks, (2nd ed., pp. 1188-1192). Cambridge, MA: MIT Press.
-
(2003)
The Handbook of Brain Theory and Neural Networks, (2nd Ed.)
, pp. 1188-1192
-
-
Bartlett, P.L.1
Maass, W.2
-
3
-
-
0013037041
-
Almost linear VC-dimension bounds for piecewise polynomial networks
-
Bartlett, P. L., Maiorov, V., & Meir, R. (1998). Almost linear VC-dimension bounds for piecewise polynomial networks. Neural Computation, 10, 2159-2173.
-
(1998)
Neural Computation
, vol.10
, pp. 2159-2173
-
-
Bartlett, P.L.1
Maiorov, V.2
Meir, R.3
-
4
-
-
0032156420
-
Localization vs. identification of semi-algebraic sets
-
Ben-David, S., & Lindenbaum, M. (1998). Localization vs. identification of semi-algebraic sets. Machine Learning, 32, 207-224.
-
(1998)
Machine Learning
, vol.32
, pp. 207-224
-
-
Ben-David, S.1
Lindenbaum, M.2
-
5
-
-
0000221271
-
Product units: A computationally powerful and biologically plausible extension to backpropagation networks
-
Durbin, R., & Rumelhart, D. (1989). Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural Computation, 1, 133-142.
-
(1989)
Neural Computation
, vol.1
, pp. 133-142
-
-
Durbin, R.1
Rumelhart, D.2
-
6
-
-
0024739191
-
A general lower bound on the number of examples needed for learning
-
Ehrenfeucht, A., Haussler, D., Kearns, M., & Valiant, L. (1989). A general lower bound on the number of examples needed for learning. Information and Computation, 82, 247-261.
-
(1989)
Information and Computation
, vol.82
, pp. 247-261
-
-
Ehrenfeucht, A.1
Haussler, D.2
Kearns, M.3
Valiant, L.4
-
7
-
-
0040314238
-
Lower bound on VC-dimension by local shattering
-
Erlich, Y., Chazan, D., Petrack, S., & Levy, A. (1997). Lower bound on VC-dimension by local shattering. Neural Computation, 9, 771-776.
-
(1997)
Neural Computation
, vol.9
, pp. 771-776
-
-
Erlich, Y.1
Chazan, D.2
Petrack, S.3
Levy, A.4
-
9
-
-
0031077292
-
Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks
-
Karpinski, M., & Macintyre, A. (1997). Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. Journal of Computer and System Sciences, 54, 169-176.
-
(1997)
Journal of Computer and System Sciences
, vol.54
, pp. 169-176
-
-
Karpinski, M.1
Macintyre, A.2
-
10
-
-
0027808119
-
VC dimension and uniform learnability of sparse polynomials and rational functions
-
Karpinski, M., & Werther, T. (1993). VC dimension and uniform learnability of sparse polynomials and rational functions. SIAM Journal on Computing, 22, 1276-1285.
-
(1993)
SIAM Journal on Computing
, vol.22
, pp. 1276-1285
-
-
Karpinski, M.1
Werther, T.2
-
12
-
-
0040908412
-
Lower bounds on the VC dimension of smoothly parameterized function classes
-
Lee, W. S., Bartlett, P. L., & Williamson, R. C. (1995). Lower bounds on the VC dimension of smoothly parameterized function classes. Neural Computation, 7, 1040-1053.
-
(1995)
Neural Computation
, vol.7
, pp. 1040-1053
-
-
Lee, W.S.1
Bartlett, P.L.2
Williamson, R.C.3
-
13
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2, 285-318.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
14
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246-257.
-
(1991)
Neural Computation
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
15
-
-
0040081674
-
Descartes' rule of signs for radial basis function neural networks
-
Schmitt, M. (2002a). Descartes' rule of signs for radial basis function neural networks. Neural Computation, 14, 2997-3011.
-
(2002)
Neural Computation
, vol.14
, pp. 2997-3011
-
-
Schmitt, M.1
-
16
-
-
0036551211
-
Neural networks with local receptive fields and superlinear VC dimension
-
Schmitt, M. (2002b). Neural networks with local receptive fields and superlinear VC dimension. Neural Computation, 14, 919-956.
-
(2002)
Neural Computation
, vol.14
, pp. 919-956
-
-
Schmitt, M.1
-
17
-
-
0036482614
-
On the complexity of computing and learning with multiplicative neural networks
-
Schmitt, M. (2002c). On the complexity of computing and learning with multiplicative neural networks. Neural Computation, 14, 241-301.
-
(2002)
Neural Computation
, vol.14
, pp. 241-301
-
-
Schmitt, M.1
-
18
-
-
1442352873
-
New designs for the Descartes rule of signs
-
Schmitt, M. (2004). New designs for the Descartes rule of signs. American Mathematical Monthly, 111, 159-164.
-
(2004)
American Mathematical Monthly
, vol.111
, pp. 159-164
-
-
Schmitt, M.1
-
19
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
|