메뉴 건너뛰기




Volumn 14, Issue 4, 2002, Pages 919-956

Neural networks with local receptive fields and superlinear VC dimension

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; ELECTROPHYSIOLOGY; NERVE CELL; PHYSIOLOGY; STATISTICAL MODEL;

EID: 0036551211     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976602317319018     Document Type: Article
Times cited : (6)

References (58)
  • 1
    • 0039130041 scopus 로고
    • Classification by polynomial surfaces
    • Anthony, M. (1995). Classification by polynomial surfaces. Discrete Applied Mathematics, 61, 91-103.
    • (1995) Discrete Applied Mathematics , vol.61 , pp. 91-103
    • Anthony, M.1
  • 3
    • 0012992044 scopus 로고
    • Quantifying generalization in linearly weighted neural networks
    • Anthony, M., & Holden, S. B. (1994). Quantifying generalization in linearly weighted neural networks. Complex Systems, 8, 91-114.
    • (1994) Complex Systems , vol.8 , pp. 91-114
    • Anthony, M.1    Holden, S.B.2
  • 5
    • 0003173321 scopus 로고
    • Convergent algorithm for sensory receptive field development
    • Atick, J. J., & Redlich, A. N. (1993). Convergent algorithm for sensory receptive field development. Neural Computation, 5, 45-60.
    • (1993) Neural Computation , vol.5 , pp. 45-60
    • Atick, J.J.1    Redlich, A.N.2
  • 6
    • 0013037041 scopus 로고    scopus 로고
    • Almost linear vc dimension bounds for piecewise polynomial networks
    • Bartlett, P. L., Maiorov, V., & Meir, R. (1998). Almost linear VC dimension bounds for piecewise polynomial networks. Neural Computation, 10, 2159-2173.
    • (1998) Neural Computation , vol.10 , pp. 2159-2173
    • Bartlett, P.L.1    Maiorov, V.2    Meir, R.3
  • 7
    • 0004839896 scopus 로고    scopus 로고
    • The VC dimension and pseudodimension of two-layer neural networks with discrete inputs
    • Bartlett, P. L., & Williamson, R. C. (1996). The VC dimension and pseudodimension of two-layer neural networks with discrete inputs. Neural Computation, 8, 625-628.
    • (1996) Neural Computation , vol.8 , pp. 625-628
    • Bartlett, P.L.1    Williamson, R.C.2
  • 10
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 11
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14, 326-334.
    • (1965) IEEE Transactions on Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 12
    • 0011275803 scopus 로고
    • k do not cut all subsets of k + 2 points
    • k do not cut all subsets of k + 2 points. Advances in Mathematics, 31, 306-308.
    • (1979) Advances in Mathematics , vol.31 , pp. 306-308
    • Dudley, R.M.1
  • 13
    • 0343115514 scopus 로고
    • The contrast sensitivity of retinal ganglion cells of the cat
    • Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517-552.
    • (1966) Journal of Physiology , vol.187 , pp. 517-552
    • Enroth-Cugell, C.1    Robson, J.G.2
  • 14
  • 16
    • 0001683814 scopus 로고
    • Layered neural networks with gaussian hidden units as universal approximations
    • Hartman, E. J., Keeler, J. D., & Kowalski, J. M. (1990). Layered neural networks with gaussian hidden units as universal approximations. Neural Computation, 2, 210-215.
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 17
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications.-Information and Computation, 100, 78-150.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 19
    • 0029264329 scopus 로고
    • Generalization and PAC learning: Some new results for the class of generalized single-layer networks
    • Holden, S. B., & Rayner, P. J. W. (1995). Generalization and PAC learning: Some new results for the class of generalized single-layer networks. IEEE Transactions on Neural Networks, 6, 368-380.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 368-380
    • Holden, S.B.1    Rayner, P.J.W.2
  • 22
    • 0027720987 scopus 로고
    • Backpropagation learns Marr's operator
    • Joshi, A., & Lee, C.-H. (1993). Backpropagation learns Marr's operator. Biological Cybernetics, 70, 65-73.
    • (1993) Biological Cybernetics , vol.70 , pp. 65-73
    • Joshi, A.1    Lee, C.-H.2
  • 23
    • 0031077292 scopus 로고    scopus 로고
    • Polynomial bounds for VC dimension of sigmoidal and general pfaffian neural networks
    • Karpinski, M., & Macintyre, A. (1997). Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. Journal of Computer and System Sciences, 54, 169-176.
    • (1997) Journal of Computer and System Sciences , vol.54 , pp. 169-176
    • Karpinski, M.1    Macintyre, A.2
  • 25
    • 77049147071 scopus 로고
    • Discharge patterns and functional organization of mammalian retina
    • Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37-68.
    • (1953) Journal of Neurophysiology , vol.16 , pp. 37-68
    • Kuffler, S.W.1
  • 26
    • 0040908412 scopus 로고
    • Lower bounds on the VC dimension of smoothly parameterized function classes
    • Lee, W. S., Bartlett, P. L., & Williamson, R. C. (1995). Lower bounds on the VC dimension of smoothly parameterized function classes. Neural Computation, 7, 1040-1053.
    • (1995) Neural Computation , vol.7 , pp. 1040-1053
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 27
    • 0039130036 scopus 로고    scopus 로고
    • Correction to "lower bounds on VC-dimension of smoothly parameterized function classes."
    • Lee, W. S., Bartlett, P. L., & Williamson, R. C. (1997). Correction to "Lower bounds on VC-dimension of smoothly parameterized function classes." Neural Computation, 9, 765-769.
    • (1997) Neural Computation , vol.9 , pp. 765-769
    • Lee, W.S.1    Bartlett, P.L.2    Williamson, R.C.3
  • 28
    • 0003346575 scopus 로고
    • From basic network principles to neural architecture: Emergence of spatial-opponent cells
    • Linsker, R. (1986). From basic network principles to neural architecture: Emergence of spatial-opponent cells. Proceedings of the National Academy of Sciences USA, 83, 7508-7512.
    • (1986) Proceedings of the National Academy of Sciences USA , vol.83 , pp. 7508-7512
    • Linsker, R.1
  • 29
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21(3), 105-117.
    • (1988) Computer , vol.21 , Issue.3 , pp. 105-117
    • Linsker, R.1
  • 30
    • 85156192490 scopus 로고    scopus 로고
    • Adaptive retina with center-surround receptive field
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Liu, S.-C, & Boahen, K. (1996). Adaptive retina with center-surround receptive field. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 678-684). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 678-684
    • Liu, S.-C.1    Boahen, K.2
  • 31
    • 0027224339 scopus 로고
    • Bounds on the computational power and learning complexity of analog neural nets
    • New York: ACM Press
    • Maass, W. (1993). Bounds on the computational power and learning complexity of analog neural nets. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing (pp. 335-344). New York: ACM Press.
    • (1993) Proceedings of the 25th Annual ACM Symposium on Theory of Computing , pp. 335-344
    • Maass, W.1
  • 32
    • 0039716477 scopus 로고
    • Neural nets with super-linear VC-dimension
    • Maass, W. (1994). Neural nets with super-linear VC-dimension. Neural Computation, 6, 877-884.
    • (1994) Neural Computation , vol.6 , pp. 877-884
    • Maass, W.1
  • 33
    • 0004512775 scopus 로고    scopus 로고
    • On the complexity of learning for spiking neurons with temporal coding
    • Maass, W., & Schmitt, M. (1999). On the complexity of learning for spiking neurons with temporal coding. Information and Computation, 153, 26-46.
    • (1999) Information and Computation , vol.153 , pp. 26-46
    • Maass, W.1    Schmitt, M.2
  • 37
    • 0023855840 scopus 로고
    • A silicon model of early visual processing
    • Mead, C. A., & Mahowald, M. A. (1988). A silicon model of early visual processing. Neural Networks, 1, 91-97.
    • (1988) Neural Networks , vol.1 , pp. 91-97
    • Mead, C.A.1    Mahowald, M.A.2
  • 38
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • Mhaskar, H. N. (1996). Neural networks for optimal approximation of smooth and analytic functions. Neural Computation, 8, 164-177.
    • (1996) Neural Computation , vol.8 , pp. 164-177
    • Mhaskar, H.N.1
  • 39
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1, 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 40
    • 26744448392 scopus 로고    scopus 로고
    • Exact VC-dimension of Boolean monomials
    • Erratum Information Processing Letters, 60, 107, 1996
    • Natschläger, T., & Schmitt, M. (1996). Exact VC-dimension of Boolean monomials. Information Processing Letters, 59, 19-20. (Erratum Information Processing Letters, 60, 107, 1996.)
    • (1996) Information Processing Letters , vol.59 , pp. 19-20
    • Natschläger, T.1    Schmitt, M.2
  • 43
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246-257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 44
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • Park, J., & Sandberg, I. W. (1993). Approximation and radial-basis-function networks. Neural Computation, 5, 305-316.
    • (1993) Neural Computation , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 45
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 48
    • 0013828759 scopus 로고
    • Quantitative analysis of cat retinal ganglion cell response to visual stimuli
    • Rodieck, R. W. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 5, 583-601.
    • (1965) Vision Research , vol.5 , pp. 583-601
    • Rodieck, R.W.1
  • 49
    • 0012942721 scopus 로고
    • Tighter bounds of the VC-dimension of three layer networks
    • Hillsdale, NJ: Erlbaum
    • Sakurai, A. (1993). Tighter bounds of the VC-dimension of three layer networks. In Proceedings of the World Congress on Neural Networks (Vol. 3, pp. 540-543). Hillsdale, NJ: Erlbaum.
    • (1993) Proceedings of the World Congress on Neural Networks , vol.3 , pp. 540-543
    • Sakurai, A.1
  • 51
    • 0039238512 scopus 로고    scopus 로고
    • Semilinear predictability minimization produces well-known feature detectors
    • Schmidhuber, J., Eldracher, M., & Foltin, B. (1996). Semilinear predictability minimization produces well-known feature detectors. Neural Computation, 8, 773-786.
    • (1996) Neural Computation , vol.8 , pp. 773-786
    • Schmidhuber, J.1    Eldracher, M.2    Foltin, B.3
  • 52
    • 0040908410 scopus 로고    scopus 로고
    • On the complexity of computing and learning with multiplicative neural networks
    • in press
    • Schmitt, M. (2000). On the complexity of computing and learning with multiplicative neural networks. Neural Computation, in press.
    • (2000) Neural Computation
    • Schmitt, M.1
  • 53
    • 0039130035 scopus 로고
    • Sample sizes for threshold networks with equivalences
    • Shawe-Taylor, J. (1995). Sample sizes for threshold networks with equivalences. Information and Computation, 118, 65-72.
    • (1995) Information and Computation , vol.118 , pp. 65-72
    • Shawe-Taylor, J.1
  • 54
    • 0002959569 scopus 로고
    • Phototransduction and information processing in the retina
    • E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.). Englewood Cliffs, NJ: Prentice Hall
    • Tessier-Lavigne, M. (1991). Phototransduction and information processing in the retina. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (3rd ed., pp. 400-418). Englewood Cliffs, NJ: Prentice Hall.
    • (1991) Principles of Neural Science 3rd Ed. , pp. 400-418
    • Tessier-Lavigne, M.1
  • 55
    • 0029274150 scopus 로고
    • VLSI implementation of receptive fields with current-mode signal processing for smart vision sensors
    • Ward, V., & Syrzycki, M. (1995). VLSI implementation of receptive fields with current-mode signal processing for smart vision sensors. Analog Integrated Circuits and Signal Processing, 7, 167-179.
    • (1995) Analog Integrated Circuits and Signal Processing , vol.7 , pp. 167-179
    • Ward, V.1    Syrzycki, M.2
  • 56
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • Wenocur, R. S., & Dudley, R. M. (1981). Some special Vapnik-Chervonenkis classes. Discrete Mathematics, 33, 313-318.
    • (1981) Discrete Mathematics , vol.33 , pp. 313-318
    • Wenocur, R.S.1    Dudley, R.M.2
  • 57
    • 0011154685 scopus 로고    scopus 로고
    • Plasticity of center-surround opponent receptive fields in real and artificial neural systems of vision
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Yasui, S., Furukawa, T., Yamada, M., & Saito, T. (1996). Plasticity of center-surround opponent receptive fields in real and artificial neural systems of vision. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 159-165). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 159-165
    • Yasui, S.1    Furukawa, T.2    Yamada, M.3    Saito, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.