-
1
-
-
0037437103
-
P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians
-
Ahmed Z 2003 P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians Phys. Lett. A 310 39-142
-
(2003)
Phys. Lett. A
, vol.310
, pp. 39-142
-
-
Ahmed, Z.1
-
5
-
-
0042636867
-
Schrödinger operators with complex potential but real spectrum
-
Cannata F, Junker G and Trost J 1998 Schrödinger operators with complex potential but real spectrum Phys. Lett. A 246 219-26
-
(1998)
Phys. Lett. A
, vol.246
, pp. 219-226
-
-
Cannata, F.1
Junker, G.2
Trost, J.3
-
6
-
-
0034658983
-
Supersymmetry without Hermiticity within PT symmetric quantum mechanics
-
Znojil M, Cannata F, Bagchi B and Roychoudhury R 2000 Supersymmetry without Hermiticity within PT symmetric quantum mechanics Phys. Lett. B 483 284
-
(2000)
Phys. Lett. B
, vol.483
, pp. 284
-
-
Znojil, M.1
Cannata, F.2
Bagchi, B.3
Roychoudhury, R.4
-
7
-
-
0037471496
-
Two-dimensional SUSY pseudo-Hermiticity without separation of variables
-
Cannata F, Ioffe M V and Nishniadinze D N 2003 Two-dimensional SUSY pseudo-Hermiticity without separation of variables Phys. Lett. A 310 344-52
-
(2003)
Phys. Lett. A
, vol.310
, pp. 344-352
-
-
Cannata, F.1
Ioffe, M.V.2
Nishniadinze, D.N.3
-
8
-
-
0038355626
-
Systematic search for PT symmetric potentials with real energy spectra
-
Levai G and Znojil M 2000 Systematic search for PT symmetric potentials with real energy spectra J. Phys. A: Math. Gen. 33 7165
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 7165
-
-
Levai, G.1
Znojil, M.2
-
10
-
-
0036025753
-
On the reality of the eigenvalues for a class of PT-symmetric oscillators
-
Shin K C 2002 On the reality of the eigenvalues for a class of PT-symmetric oscillators Commun. Math. Phys. 229 543-64
-
(2002)
Commun. Math. Phys.
, vol.229
, pp. 543-564
-
-
Shin, K.C.1
-
11
-
-
0035920075
-
Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics
-
Dorey P, Dunning C and Tateo R 2001 Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics J. Phys. A: Math. Gen. 34 5679-704
-
(2001)
J. Phys. A: Math. Gen.
, vol.34
, pp. 5679-5704
-
-
Dorey, P.1
Dunning, C.2
Tateo, R.3
-
14
-
-
1342339583
-
Spectral analysis and perturbation theory for a class of non-self-adjoint Schrödinger operators
-
Nardini F 1985 Spectral analysis and perturbation theory for a class of non-self-adjoint Schrödinger operators Boll. Unione Mat. Ital. B 4 473-90
-
(1985)
Boll. Unione Mat. Ital. B
, vol.4
, pp. 473-490
-
-
Nardini, F.1
-
16
-
-
0035981958
-
Pseudo-Heimiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
-
Mostafazadeh A 2002 Pseudo-Heimiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205-12 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum J. Math. Phys. 2814-6 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries J. Math. Phys. 3944-51
-
(2002)
J. Math. Phys.
, vol.43
, pp. 205-212
-
-
Mostafazadeh, A.1
-
17
-
-
0035981827
-
Pseudo-Hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum
-
Mostafazadeh A 2002 Pseudo-Heimiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205-12 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum J. Math. Phys. 2814-6 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries J. Math. Phys. 3944-51
-
(2002)
J. Math. Phys.
, pp. 2814-2816
-
-
Mostafazadeh, A.1
-
18
-
-
0035981741
-
Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries
-
Mostafazadeh A 2002 Pseudo-Heimiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205-12 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum J. Math. Phys. 2814-6 Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries J. Math. Phys. 3944-51
-
(2002)
J. Math. Phys.
, pp. 3944-3951
-
-
Mostafazadeh, A.1
-
20
-
-
0003952516
-
-
Cambridge: Cambridge University Press
-
Horn V 1991-4 Topics in Matrix Analysis (Cambridge: Cambridge University Press)
-
(1991)
Topics in Matrix Analysis
-
-
Horn, V.1
-
22
-
-
0034716865
-
Distributional Borel summability of odd anharmonic oscillators
-
Caliceti E 2000 Distributional Borel summability of odd anharmonic oscillators J. Phys. A: Math. Gen. 33 3753-70
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 3753-3770
-
-
Caliceti, E.1
-
23
-
-
0000863714
-
Stability of Schrödinger eigenvalue problems
-
Hunziker W and Vock E 1982 Stability of Schrödinger eigenvalue problems Commun. Math. Phys. 83 281-302
-
(1982)
Commun. Math. Phys.
, vol.83
, pp. 281-302
-
-
Hunziker, W.1
Vock, E.2
-
24
-
-
0000746891
-
Degenerate asymptotic perturbation theory
-
Hunziker W and Fillet C A 1983 Degenerate asymptotic perturbation theory Commun. Math. Phys. 90 219-33
-
(1983)
Commun. Math. Phys.
, vol.90
, pp. 219-233
-
-
Hunziker, W.1
Fillet, C.A.2
|