메뉴 건너뛰기




Volumn 1, Issue , 2004, Pages 261-266

Feature selection using neural network with weighted fuzzy membership functions

Author keywords

Feature selection; Fuzzy neural network; Rule extraction; Weighted membership function

Indexed keywords

FEATURE SELECTION; FUZZY NEURAL NETWORKS; RULE EXTRACTION; WEIGHTED MEMBERSHIP FUNCTIONS;

EID: 12744281519     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (18)
  • 1
    • 0032155316 scopus 로고    scopus 로고
    • Unsupervised feature selection using a neuro-fuzzy approach
    • J.Basak, R.K. De, and S.K. Pal, "Unsupervised Feature Selection Using a Neuro-Fuzzy Approach," Pattern Reconition Letter, Vol. 19, pp. 997-1006, 1998.
    • (1998) Pattern Reconition Letter , vol.19 , pp. 997-1006
    • Basak, J.1    De, R.K.2    Pal, S.K.3
  • 2
    • 0025889915 scopus 로고
    • ARTMAP: Supervised real-time learning and classification of nonstationary data by a selforganizing neural network
    • G. A. Carpenter, S. Grossberg, and J.H. Reynolds, "ARTMAP: Supervised real-time learning and classification of nonstationary data by a selforganizing neural network," Neural Networks, Vol. 4, pp. 565-588, 1991.
    • (1991) Neural Networks , vol.4 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 3
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problem
    • R. A. Fisher, "The Use of Multiple Measurements in taxonomic Problem," Annals of Eugenics, Vol. 7, No. 2, pp. 179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 4
    • 0035426324 scopus 로고    scopus 로고
    • Approximative fuzzy rules approaches for classification with hybrid-GA techniques
    • A.F. Gomez-Skarmeta, M.V.F. Jimenez, J.G. Marin-Blazques, "Approximative Fuzzy Rules Approaches for Classification with Hybrid-GA Techniques," Information Sciences, Vol. 136, pp. 193-214, 2001
    • (2001) Information Sciences , vol.136 , pp. 193-214
    • Gomez-Skarmeta, A.F.1    Jimenez, M.V.F.2    Marin-Blazques, J.G.3
  • 5
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • H. Ishibuchi and T. Nakashima, "Voting in Fuzzy Rule-Based Systems for Pattern Classification Problems," Fuzzy Sets and Systems, Vol. 103, pp. 223-238, 1999.
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2
  • 6
    • 0027601884 scopus 로고
    • ANFIS: Adaptive network-based fuzzy inference system
    • May-June
    • R. Jang, "ANFIS: Adaptive network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., Vol. 23, pp. 665-685, May-June 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-685
    • Jang, R.1
  • 7
    • 0031999146 scopus 로고    scopus 로고
    • An on-line selfconstructing neural fuzzy inference network and its applications
    • C.F. Juang and C.T. Lin, "An On-Line SelfConstructing Neural Fuzzy Inference Network and Its Applications," IEEE Trans. Fuzzy Systems, Vol. 6(1), pp. 12-32, 1998.
    • (1998) IEEE Trans. Fuzzy Systems , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 9
    • 0002160029 scopus 로고
    • Simplified fuzzy ARTMAP
    • Nov.
    • T. Kasuba, "Simplified Fuzzy ARTMAP," IEEE AI Expert, pp. 19-25, Nov. 1993.
    • (1993) IEEE AI Expert , pp. 19-25
    • Kasuba, T.1
  • 10
    • 0032144971 scopus 로고    scopus 로고
    • A neural networks with disjunctive fuzzy information
    • H.-M. Lee, K.-H. Chen, and I-F. Jiang, "A Neural Networks with Disjunctive Fuzzy Information," Neural Networks, Vol. 11, pp. 1113-1125, 1998.
    • (1998) Neural Networks , vol.11 , pp. 1113-1125
    • Lee, H.-M.1    Chen, K.-H.2    Jiang, I.-F.3
  • 11
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Dec.
    • C.T. Lin and C.S. George Lee, "Neural-network-based fuzzy logic control and decision system," IEEE Trans. Computers, Vol. 40, No. 12, Dec., 1991.
    • (1991) IEEE Trans. Computers , vol.40 , Issue.12
    • Lin, C.T.1    Lee, C.S.G.2
  • 12
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • D. Nauck and R. Kruse, "A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data," Fuzzy Sets and Systems, Vol. 89, pp. 277-288, 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 13
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • M. Setnes and H. Roubos, "GA-Fuzzy Modeling and Classification: Complexity and Performance," IEEE Trans. Fuzzy Systems, Vol. 8(5), pp. 509-522, 2000.
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 14
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks-part 1: Classification
    • P. Simpson, "Fuzzy min-max neural networks-Part 1: Classification," IEEE Trans. Neural Networks, Vol. 3, pp. 776-786, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.1
  • 15
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Application to Modeling and Control," IEEE Trans. Syst., Man, Cybern., Vol. 15, pp. 116-132, 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 16
    • 0029358133 scopus 로고
    • Modeling and control of carbon monoxide concentration using a neuro-fuzzy technique
    • June
    • K. Tanaka, M. Sano, and H. Watanabe, "Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy technique," IEEE Trans. Fuzzy Systems, Vol. 3, pp. 271-279, June, 1995.
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , pp. 271-279
    • Tanaka, K.1    Sano, M.2    Watanabe, H.3
  • 18
    • 0036902547 scopus 로고    scopus 로고
    • Self-adaptive neuro-fuzzy inference system for classification applications
    • J.S. Wang and C.S.G. Lee, "Self-Adaptive Neuro-Fuzzy Inference System for Classification Applications," IEEE Trans. Fuzzy Systems, Vol. 10(6), pp. 790-802, 2002.
    • (2002) IEEE Trans. Fuzzy Systems , vol.10 , Issue.6 , pp. 790-802
    • Wang, J.S.1    Lee, C.S.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.