메뉴 건너뛰기




Volumn 5207, Issue 1, 2003, Pages 405-416

Wavelet-based approaches for multiple hypothesis testing in activation mapping of functional magnetic resonance images of the human brain

Author keywords

Bayesian; Brain; Multiple hypothesis testing; Neuroimaging; Wavelets

Indexed keywords

ALGORITHMS; BRAIN; IMAGE PROCESSING; MAGNETIC RESONANCE IMAGING; MAPPING; REGRESSION ANALYSIS;

EID: 1242263416     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.503377     Document Type: Conference Paper
Times cited : (4)

References (38)
  • 1
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • D. L. Donoho and I. M. Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika 81(3), pp. 425-455, 1994.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 4
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. PAMI 11(7), pp. 674-693, 1989.
    • (1989) IEEE Trans. PAMI , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 7
    • 0030402111 scopus 로고    scopus 로고
    • Noise removal via bayesian wavelet coring
    • IEEE Sig Proc Society, (Lausanne)
    • E. P. Simoncelli and E. H. Adelson, "Noise removal via bayesian wavelet coring," in Third Int'l Conf on Image Proc, 1, pp. 379-382, IEEE Sig Proc Society, (Lausanne), 1996.
    • (1996) Third Int'l Conf on Image Proc , vol.1 , pp. 379-382
    • Simoncelli, E.P.1    Adelson, E.H.2
  • 10
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based statistical signal processing using hidden markov models
    • M. Crouse, R. Nowak, and R. Baraniuk, "Wavelet-based statistical signal processing using hidden markov models," IEEE Transactions on Signal Processing 46(4), pp. 886-902, 1998.
    • (1998) IEEE Transactions on Signal Processing , vol.46 , Issue.4 , pp. 886-902
    • Crouse, M.1    Nowak, R.2    Baraniuk, R.3
  • 11
    • 0003398270 scopus 로고    scopus 로고
    • Empirical bayes approaches to mixture problems and wavelet regression
    • Department of Mathematics, University of Bristol, UK.
    • I. Johnstone and B. Silverman, "Empirical bayes approaches to mixture problems and wavelet regression," tech. rep., Department of Mathematics, University of Bristol, UK., 1998.
    • (1998) Tech. Rep.
    • Johnstone, I.1    Silverman, B.2
  • 12
    • 0032349461 scopus 로고    scopus 로고
    • Nonlinear wavelet shrinkage with Bayes rules and Bayes factors
    • B. Vidakovic, "Nonlinear wavelet shrinkage with Bayes rules and Bayes factors," Journal of the American Statistical Association 93(441). pp. 173-179, 1998.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.441 , pp. 173-179
    • Vidakovic, B.1
  • 13
    • 0001477056 scopus 로고    scopus 로고
    • Empirical bayes estimation in wavelet nonparametric regression
    • P. Muller and B. Vidakovic, eds., Springer-Verlag, New York
    • M. A. Clyde and E. I. George, "Empirical bayes estimation in wavelet nonparametric regression," in Bayesian Inference in Wavelet Based Models, P. Muller and B. Vidakovic, eds., pp. 309-322, Springer-Verlag, New York, 1999.
    • (1999) Bayesian Inference in Wavelet Based Models , pp. 309-322
    • Clyde, M.A.1    George, E.I.2
  • 14
    • 0034354040 scopus 로고    scopus 로고
    • Flexible empirical bayes estimation for wavelets
    • M. Clyde and E. George, "Flexible empirical bayes estimation for wavelets," J. R. Statist. Soc. B 62, pp. 681-698, 2000.
    • (2000) J. R. Statist. Soc. B , vol.62 , pp. 681-698
    • Clyde, M.1    George, E.2
  • 15
    • 0033478457 scopus 로고    scopus 로고
    • Covariance structure of wavelet coefficients: Theory and models in a bayesian perspective
    • M. Vannucci and F. Corradi, "Covariance structure of wavelet coefficients: theory and models in a bayesian perspective," J. R. Statist. Soc. B 61, pp. 971-986, 1999.
    • (1999) J. R. Statist. Soc. B , vol.61 , pp. 971-986
    • Vannucci, M.1    Corradi, F.2
  • 16
    • 0034551941 scopus 로고    scopus 로고
    • Bayesian wavelet shrinkage for nonparametric mixed effects models
    • S. Huang and H. Lu, "Bayesian wavelet shrinkage for nonparametric mixed effects models," Statist. Sinica 10, pp. 1021-1040, 2000.
    • (2000) Statist. Sinica , vol.10 , pp. 1021-1040
    • Huang, S.1    Lu, H.2
  • 17
    • 0034259592 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • S. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression." IEEE Transactions on Image Processing 9(9), pp. 1522-1531, 2000.
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.9 , pp. 1522-1531
    • Chang, S.1    Yu, B.2    Vetterli, M.3
  • 18
    • 0035413315 scopus 로고    scopus 로고
    • Novel bayesian multiscale method for speckle removal in medical ultrasound images
    • A. Achim, A. Bezerianos, and P. Tsakalides, "Novel bayesian multiscale method for speckle removal in medical ultrasound images," IEEE Trans. Med. Imag. 20, pp. 772-783, 2001.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , pp. 772-783
    • Achim, A.1    Bezerianos, A.2    Tsakalides, P.3
  • 19
    • 0012780893 scopus 로고    scopus 로고
    • Wavelet estimators in nonparametric regression: A comparative simulation study
    • A. Antoniadis, J. Bigot, and T. Sapatinas, "Wavelet estimators in nonparametric regression: A comparative simulation study," Journal of Statistical Software 6(6), 2001.
    • (2001) Journal of Statistical Softwars , vol.6 , Issue.6
    • Antoniadis, A.1    Bigot, J.2    Sapatinas, T.3
  • 20
    • 0035140147 scopus 로고    scopus 로고
    • Color noise and computational inference in neurophysiological (fmri) time series analysis: Resampling methods in time and wavelet domains
    • E. Bullmore, C. Long, J. Suckling, M. Fadili, G. Calvert, F. Zelaya, A. Carpenter, and M. Brammer, "Color noise and computational inference in neurophysiological (fmri) time series analysis: Resampling methods in time and wavelet domains," Human Brain Mapping 12(2), pp. 61-78, 2001.
    • (2001) Human Brain Mapping , vol.12 , Issue.2 , pp. 61-78
    • Bullmore, E.1    Long, C.2    Suckling, J.3    Fadili, M.4    Calvert, G.5    Zelaya, F.6    Carpenter, A.7    Brammer, M.8
  • 21
    • 0036328554 scopus 로고    scopus 로고
    • Wavelet-generalised least squares: A new blu estimator of linear regression models with 1/f errors
    • M. Fadili and E. Bullmore, "Wavelet-generalised least squares: a new blu estimator of linear regression models with 1/f errors," NeuroImage 15, pp. 217-232, 2001.
    • (2001) NeuroImage , vol.15 , pp. 217-232
    • Fadili, M.1    Bullmore, E.2
  • 22
    • 0029931242 scopus 로고    scopus 로고
    • A unified statistical approach for determining significant signals in images of cerebral activation
    • K. W. S. Marrett, P. Neelin, A. Vandal, and K. F. A. Evans, "A unified statistical approach for determining significant signals in images of cerebral activation," Human Brain Mapping 4, pp. 58-73, 1999.
    • (1999) Human Brain Mapping , vol.4 , pp. 58-73
    • Marrett, K.W.S.1    Neelin, P.2    Vandal, A.3    Evans, K.F.A.4
  • 23
    • 0031688146 scopus 로고    scopus 로고
    • Multidimensional wavelet analysis of functional magnetic resonance images
    • M. Brammer, "Multidimensional wavelet analysis of functional magnetic resonance images," Hum Brain Mapp 6, pp. 378-382, 1998.
    • (1998) Hum Brain Mapp , vol.6 , pp. 378-382
    • Brammer, M.1
  • 28
    • 85130218885 scopus 로고    scopus 로고
    • Statistical analysis of image differences by wavelet decomposition
    • A. Aldroubi and M. Unser, eds., ch. 5, CRC Press, Boca Raton FL, USA
    • U. Ruttimann, M. Unser, P. Thévenaz, C. Lee, D. Rio, and D. Hommer, "Statistical analysis of image differences by wavelet decomposition," in Wavelets in Medicine and Biology, A. Aldroubi and M. Unser, eds., ch. 5, pp. 115-144, CRC Press, Boca Raton FL, USA, 1996.
    • (1996) Wavelets in Medicine and Biology , pp. 115-144
    • Ruttimann, U.1    Unser, M.2    Thévenaz, P.3    Lee, C.4    Rio, D.5    Hommer, D.6
  • 33
    • 0001835983 scopus 로고
    • Thresholding of wavelet coefficients as multiple hypotheses testing procedure
    • A. Antoniadis and G. Oppenheim, eds., Springer-Verlag, New York
    • F. Abramovich and Y. Benjamini, "Thresholding of wavelet coefficients as multiple hypotheses testing procedure," in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, eds., pp. 5-14, Springer-Verlag, New York, 1995.
    • (1995) Wavelets and Statistics , pp. 5-14
    • Abramovich, F.1    Benjamini, Y.2
  • 35
    • 21344466471 scopus 로고    scopus 로고
    • Change-point approach to data analytic wavelet thresholding
    • R. T. Ogden and E. Parzen, "Change-point approach to data analytic wavelet thresholding," Statistics and Computing 6(2). pp. 93-99, 1996.
    • (1996) Statistics and Computing , vol.6 , Issue.2 , pp. 93-99
    • Ogden, R.T.1    Parzen, E.2
  • 36
    • 0001682758 scopus 로고    scopus 로고
    • Multiple shrinkage and subset selection in wavelets
    • M. Clyde, G. Parmigiani, and B. Vidakovic, "Multiple shrinkage and subset selection in wavelets," Biometrika 85(2), pp. 391-401, 1998.
    • (1998) Biometrika , vol.85 , Issue.2 , pp. 391-401
    • Clyde, M.1    Parmigiani, G.2    Vidakovic, B.3
  • 37
    • 0009727215 scopus 로고    scopus 로고
    • Bayesian approach to wavelet decomposition and shrinkage
    • P. Muller and B. Vidakovic, eds., Springer-Verlag, New York
    • F. Abramovich and T. Sapatinas, "Bayesian approach to wavelet decomposition and shrinkage," in Bayesian Inference in Wavelet Based Models, P. Muller and B. Vidakovic, eds., pp. 33-50, Springer-Verlag, New York, 1999.
    • (1999) Bayesian Inference in Wavelet Based Models , pp. 33-50
    • Abramovich, F.1    Sapatinas, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.