메뉴 건너뛰기




Volumn 24, Issue 4, 2003, Pages 461-482

Diagnostic checking in a flexible nonlinear time series model

Author keywords

Heteroscedasticity, misspecification; Neural networks; Nonlinear models; Parameter constancy; Serial independence; Star models; Statistical inference; Time series

Indexed keywords


EID: 0141976692     PISSN: 01439782     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9892.00316     Document Type: Article
Times cited : (16)

References (27)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • AKAIKE, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-23.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 84958839520 scopus 로고
    • A simple test for heteroscedasticity and random coefficient variation
    • BREUSCH, T. S. and PAGAN, A. R. (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287-94.
    • (1979) Econometrica , vol.47 , pp. 1287-1294
    • Breusch, T.S.1    Pagan, A.R.2
  • 3
    • 84897079438 scopus 로고
    • The lagrange multiplier test and its applications to model specification in econometrics
    • _ and _ (1980) The lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47, 23-53.
    • (1980) Review of Economic Studies , vol.47 , pp. 23-53
  • 4
    • 84986792427 scopus 로고
    • On estimating thresholds in autoregressive models
    • CHAN, K. S. and TONG, H. (1986) On estimating thresholds in autoregressive models. Journal of Time Series Analysis 7, 179-90.
    • (1986) Journal of Time Series Analysis , vol.7 , pp. 179-190
    • Chan, K.S.1    Tong, H.2
  • 5
    • 0002203478 scopus 로고    scopus 로고
    • Graphical methods for investigating the size and power of hypothesis tests
    • DAVIDSON, R. and MACKinnon, J. G. (1998) Graphical methods for investigating the size and power of hypothesis tests. The Manchester School 66, 1-26.
    • (1998) The Manchester School , vol.66 , pp. 1-26
    • Davidson, R.1    MacKinnon, J.G.2
  • 6
    • 0002158185 scopus 로고    scopus 로고
    • Testing the adequacy of smooth transition autoregressive models
    • EITRHEIM, Ø. and TERÄSVIRTA, T. (1996) Testing the adequacy of smooth transition autoregressive models. Journal of Econometrics 74, 59-75.
    • (1996) Journal of Econometrics , vol.74 , pp. 59-75
    • Eitrheim, Ø.1    Teräsvirta, T.2
  • 9
    • 0000471755 scopus 로고
    • On conditional least squares estimation for stochastic process
    • KLIMKO, L. A. and NELSON, P. I. (1978) On conditional least squares estimation for stochastic process. Annals of Statistics 6, 629-42.
    • (1978) Annals of Statistics , vol.6 , pp. 629-642
    • Klimko, L.A.1    Nelson, P.I.2
  • 10
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • KUAN, C. M. and White, H. (1994) Artificial neural networks: An econometric perspective. Econometric Reviews 13, 1-91.
    • (1994) Econometric Reviews , vol.13 , pp. 1-91
    • Kuan, C.M.1    White, H.2
  • 11
    • 0009904986 scopus 로고    scopus 로고
    • Stationarity and stability of autoregressive neural network processes
    • eds M. S. Kearns, S. A. Solla and D. A. Cohn. MIT Press, USA
    • LEISCH, F., TRAPLETTI, A. and HORNIK, K. (1999) Stationarity and stability of autoregressive neural network processes. In Advances in Neural Information Processing Systems. Vol. 11 (eds M. S. Kearns, S. A. Solla and D. A. Cohn). MIT Press, USA.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Leisch, F.1    Trapletti, A.2    Hornik, K.3
  • 13
    • 0000894103 scopus 로고
    • Testing linearity against smooth transition autoregressive models
    • LUUKKONEN, R., SAIKKONEN, P. and TERÄSVIRTA, T. (1988). Testing linearity against smooth transition autoregressive models. Biometrika 75, 491-9.
    • (1988) Biometrika , vol.75 , pp. 491-499
    • Luukkonen, R.1    Saikkonen, P.2    Teräsvirta, T.3
  • 14
    • 0001121243 scopus 로고    scopus 로고
    • A hybrid linear-neural model for time series forecasting
    • MEDEIROS, M. C. and VEIGA, A. (2000a) A hybrid linear-neural model for time series forecasting. IEEE Transactions on Neural Networks: 11, 1402-1412.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 1402-1412
    • Medeiros, M.C.1    Veiga, A.2
  • 15
    • 21444448980 scopus 로고    scopus 로고
    • A flexible coefficient smooth transition time series model
    • Stockholm School of Economics
    • _ and _ (2000b) A flexible coefficient smooth transition time series model. Working Paper Series in Economics and Finance 361, Stockholm School of Economics.
    • (2000) Working Paper Series in Economics and Finance , vol.361
  • 16
    • 0141920164 scopus 로고    scopus 로고
    • Nonlinear time series models: Consistency and asymptotic normality of nls under new conditions
    • eds W. A. Barnett, D. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjøsthein and A. Wuørtz. Cambridge University Press
    • MIRA, S. and ESCRIBANO, A. (2000) Nonlinear time series models: Consistency and asymptotic normality of nls under new conditions. In Nonlinear Econometric Modeling in Time Series Analysis (eds W. A. Barnett, D. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjøsthein and A. Wuørtz). Cambridge University Press, 119-64.
    • (2000) Nonlinear Econometric Modeling in Time Series Analysis , pp. 119-164
    • Mira, S.1    Escribano, A.2
  • 18
    • 85009873742 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461-4.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 19
    • 84923053681 scopus 로고
    • Specification, estimation, and evaluation of smooth transition autoregressive models
    • TERÄSVIRTA, T. (1994) Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association 89 (425), 208-18.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.425 , pp. 208-218
    • Teräsvirta, T.1
  • 20
    • 84858533180 scopus 로고
    • Determining the number of hidden units in a single hidden-layer neural network model
    • Bank of Norway
    • _ and LIN, C. -F. J. (1993) Determining the number of hidden units in a single hidden-layer neural network model. Research report, Bank of Norway.
    • (1993) Research Report
    • Lin, C.F.J.1
  • 21
    • 84981375164 scopus 로고
    • Power of the neural network linearity test
    • _, _ and GRANGER, C. W. J. (1993) Power of the neural network linearity test. Journal of Time Series Analysis 14 (2), 309-23.
    • (1993) Journal of Time Series Analysis , vol.14 , Issue.2 , pp. 309-323
    • Granger, C.W.J.1
  • 22
    • 0018067185 scopus 로고
    • On a threshold model
    • ed. C.H. Chen. Amsterdam: Sijthoff and Noordhoff
    • TONG, H. (1978) On a threshold model. In Pattern Recognition and Signal Processing (ed. C.H. Chen). Amsterdam: Sijthoff and Noordhoff.
    • (1978) Pattern Recognition and Signal Processing
    • Tong, H.1
  • 25
    • 0000003175 scopus 로고
    • Threshold autoregression, limit cycles and cyclical data (with discussion)
    • _ and LIM, K. (1980) Threshold autoregression, limit cycles and cyclical data (with discussion). Journal of the Royal Statistical Society, Series B 42, 245-92.
    • (1980) Journal of the Royal Statistical Society, Series B , vol.42 , pp. 245-292
    • Lim, K.1
  • 26
    • 70350103507 scopus 로고
    • Estimation and inference for dependent process
    • eds R. F. Engle and D. L. McFadden. Elsevier Science
    • WOOLDRIDGE, J. M. (1994) Estimation and inference for dependent process, In Handbook of Econometrics, Vol. 4 (eds R. F. Engle and D. L. McFadden). Elsevier Science, 2639-738.
    • (1994) Handbook of Econometrics , vol.4 , pp. 2639-2738
    • Wooldridge, J.M.1
  • 27
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • ZHANG, G., PATUWO, B. and Hu, M. (1998) Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14, 35-62.
    • (1998) International Journal of Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.