메뉴 건너뛰기




Volumn 3, Issue , 2004, Pages 2053-2058

Kernel principal component analysis and support vector machines for stock price prediction

Author keywords

Financial Time Series; Forecasting; Kernel Principal Component Analysis; Support Vector Regression

Indexed keywords

FINANCIAL TIME SERIES; KERNEL PRINCIPAL COMPONENT ANALYSIS; SUPPORT VECTOR MACHINES (SVM); SUPPORT VECTOR REGRESSION;

EID: 10844223635     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2004.1380933     Document Type: Conference Paper
Times cited : (36)

References (25)
  • 1
    • 0004192924 scopus 로고    scopus 로고
    • Classification properties of support vector machines for regression
    • RIIESI/CNR- Nr. 02/99
    • N. Ancona. Classification properties of support vector machines for regression. Technical report, 1999. RIIESI/CNR- Nr. 02/99.
    • (1999) Technical Report
    • Ancona, N.1
  • 2
    • 0038298413 scopus 로고    scopus 로고
    • Mechanistic approach to generalized technical analysis of share prices and stock market indices
    • M. Ausloos, and K. Ivanova, Mechanistic approach to generalized technical analysis of share prices and stock market indices, The European Physical Journal B (27): 177-187, 2002.
    • (2002) The European Physical Journal B , Issue.27 , pp. 177-187
    • Ausloos, M.1    Ivanova, K.2
  • 3
    • 0037404567 scopus 로고    scopus 로고
    • Application of neural networks to an emerging market: Forecasting and trading the Taiwan Stock Index
    • A. Chen, M. T. Leung, and H. Daouk, Application of neural networks to an emerging market: forecasting and trading the Taiwan Stock Index, Computers & Operation Research (30): 901-923, 2003.
    • (2003) Computers & Operation Research , Issue.30 , pp. 901-923
    • Chen, A.1    Leung, M.T.2    Daouk, H.3
  • 4
    • 0000913324 scopus 로고    scopus 로고
    • Svmtorch: Support vector machines for large-scale regression problems
    • 87
    • R. Collobert and S. Bengio. Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1:143-160, 2001. 87
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 2442619800 scopus 로고    scopus 로고
    • A framework for comperative analysis of statistical and machine learning methods: An application to the black scholes option pricing equations
    • Banco dc Mexico, Mexico, DF
    • J. Galindo. A framework for comperative analysis of statistical and machine learning methods: An application to the black scholes option pricing equations. Technical report, Banco dc Mexico, Mexico, DF, 04930, 1998.
    • (1998) Technical Report , pp. 04930
    • Galindo, J.1
  • 8
    • 84993911657 scopus 로고
    • A nonparametic approach to pricing and hedging derivative securities via learning networks
    • J. M. Hutchinson, A. W. Lo, and T. Poggio. A nonparametic approach to pricing and hedging derivative securities via learning networks. The Journal of Finance, XLIX(1):851-889, 1994.
    • (1994) The Journal of Finance , vol.49 , Issue.1 , pp. 851-889
    • Hutchinson, J.M.1    Lo, A.W.2    Poggio, T.3
  • 9
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors. MIT Press
    • T. Joachims. Making large-scale svm learning practical. In B. Scholkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 169-184. MIT Press, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 11
    • 0036167958 scopus 로고    scopus 로고
    • An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE
    • W. Leigh, M. Paz, and R. Purvis, An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE, The International Journal of Management Science (30): 69-76, 2002.
    • (2002) The International Journal of Management Science , Issue.30 , pp. 69-76
    • Leigh, W.1    Paz, M.2    Purvis, R.3
  • 12
    • 84947570319 scopus 로고    scopus 로고
    • GA and financial analysis
    • L. Monostori, J. Vancza, and M. Ali (Eds), IEA/AIE 2001
    • M. Leus, D. Deugo, F. Oppacher, and R. Cattral, GA and financial analysis, in L. Monostori, J. Vancza, and M. Ali (Eds), IEA/AIE 2001, LNAI 2070, pp. 868-873,2001.
    • (2001) LNAI , vol.2070 , pp. 868-873
    • Leus, M.1    Deugo, D.2    Oppacher, F.3    Cattral, R.4
  • 13
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Scholkopf, C.J.C. Burgers, A.J. Smola (Eds), MIT Press, Cambridge, MA
    • B. Scholkopf, A. Smola, and K. R. Muller, Kernel Principal Component Analysis, in: B. Scholkopf, C.J.C. Burgers, A.J. Smola (Eds), Advances in Kernel Methods- Support Vector Learning, MIT Press, Cambridge, MA, 1999, pp. 293-306
    • (1999) Advances in Kernel Methods- Support Vector Learning , pp. 293-306
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 15
    • 0003425668 scopus 로고    scopus 로고
    • Properties of support vector machines
    • Massachusetts Institute of Technology, Artificial Intelligence Laboratory
    • M. Pontil and A. Verri. Properties of support vector machines. Technical report, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, 1997.
    • (1997) Technical Report
    • Pontil, M.1    Verri, A.2
  • 17
  • 18
    • 0005908073 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Invited paper, in press
    • A. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 1998. Invited paper, in press.
    • (1998) Statistics and Computing
    • Smola, A.1    Schölkopf, B.2
  • 19
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • F. E. H. Tay and L.J. Cao, Modified support vector machines in financial time series forecasting, Neurocomputing(48): 847-861,2002.
    • (2002) Neurocomputing , Issue.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 20
    • 0037209489 scopus 로고    scopus 로고
    • The use of kernel principal component analysis to model data distribution
    • C.J. Twining and C.J. Taylor, The use of kernel principal component analysis to model data distribution, Pattern Recognition 36 (2003), 217-227.
    • (2003) Pattern Recognition , vol.36 , pp. 217-227
    • Twining, C.J.1    Taylor, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.