-
1
-
-
0028025580
-
-
doi:10.1016/S0960-894X(01)80386-3
-
M. C. Desai, S. L. Lefkowitz, D. C. Bryce, S. McLean, Bioorg. Med. Chem. Lett. 1994, 15, 1865. doi:10.1016/S0960-894X(01)80386-3
-
(1994)
Bioorg. Med. Chem. Lett.
, vol.15
, pp. 1865
-
-
Desai, M.C.1
Lefkowitz, S.L.2
Bryce, D.C.3
McLean, S.4
-
3
-
-
0033578811
-
-
doi:10.1016/S0040-4020(99)00663-8
-
U. Wille, L. Lietzau, Tetrahedron 1999, 55, 11465. doi:10.1016/S0040-4020(99)00663-8
-
(1999)
Tetrahedron
, vol.55
, pp. 11465
-
-
Wille, U.1
Lietzau, L.2
-
4
-
-
0033551813
-
-
doi:10.1016/S0040-4020(99)00564-5
-
U. Wille, L. Lietzau, Tetrahedron 1999, 55, 10119. doi:10.1016/S0040-4020(99)00564-5
-
(1999)
Tetrahedron
, vol.55
, pp. 10119
-
-
Wille, U.1
Lietzau, L.2
-
5
-
-
0037126994
-
-
doi: 10.1002/15213765(20020118)8:2<340::AID-CHEM340>3.3.CO;2-W
-
U. Wille, Chem. Eur. J. 2002, 8, 340. doi: 10.1002/15213765(20020118)8:2<340::AID-CHEM340>3.3.CO;2-W
-
(2002)
Chem. Eur. J.
, vol.8
, pp. 340
-
-
Wille, U.1
-
8
-
-
0037060053
-
-
doi:10.1016/S0040-4039(01)02398-X
-
(c) U. Wille, Tetrahedron Lett. 2002, 43, 1239. doi:10.1016/S0040-4039(01)02398-X
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 1239
-
-
Wille, U.1
-
9
-
-
0037045245
-
-
doi:10.1021/JA017006O
-
(d) U. Wille, J. Am. Chem. Soc. 2002, 124, 14. doi:10.1021/JA017006O
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 14
-
-
Wille, U.1
-
11
-
-
0035819444
-
-
doi:10.1039/B0072861
-
(a) P. W. Smith, A. R. Whittington, K. N. Cobley, A. Jaxa-Chamiec, H. Finch, J. Chem. Soc., Perkin Trans. 1 2001, 21. doi:10.1039/B0072861
-
(2001)
J. Chem. Soc., Perkin Trans. 1
, pp. 21
-
-
Smith, P.W.1
Whittington, A.R.2
Cobley, K.N.3
Jaxa-Chamiec, A.4
Finch, H.5
-
12
-
-
0032541734
-
-
H. A. Kelly, R. Bolton, S. A. Brown, S. J. Coote, M. Dowle, U. Dyer, H. Finch, D. Golding, et al. Tetrahedron Lett. 1998, 39, 6979.
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 6979
-
-
Kelly, H.A.1
Bolton, R.2
Brown, S.A.3
Coote, S.J.4
Dowle, M.5
Dyer, U.6
Finch, H.7
Golding, D.8
-
14
-
-
0029823172
-
-
doi:10.1021/JO960185L
-
(d) M. D. Ennis, R. L. Hoffman, N. B. Ghazal, D. W. Old, P. A. Mooney, J. Org. Chem. 1996, 61, 5813. doi:10.1021/JO960185L
-
(1996)
J. Org. Chem.
, vol.61
, pp. 5813
-
-
Ennis, M.D.1
Hoffman, R.L.2
Ghazal, N.B.3
Old, D.W.4
Mooney, P.A.5
-
15
-
-
0032559961
-
-
doi:10.1016/S0040-4039(98)00345-1
-
(e) H. G. Aurich, M. Soeberdt, Tetrahedron Lett. 1998, 39, 2553. doi:10.1016/S0040-4039(98)00345-1
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 2553
-
-
Aurich, H.G.1
Soeberdt, M.2
-
16
-
-
0001914846
-
-
doi:10.1039/A902362C
-
(f) M. Kossenjans, M. Soeberdt, S. Wallbaum, K. Harms, J. Martens, H. G. Aurich, J. Chem. Soc., Perkin Trans. 1 1999, 2353. doi:10.1039/A902362C
-
(1999)
J. Chem. Soc., Perkin Trans. 1
, pp. 2353
-
-
Kossenjans, M.1
Soeberdt, M.2
Wallbaum, S.3
Harms, K.4
Martens, J.5
Aurich, H.G.6
-
17
-
-
0026029281
-
-
doi:10.1016/S0040-4020(01)96036-3
-
(g) A. Nuhrich, J. Moulines, Tetrahedron 1991, 47, 3075. doi:10.1016/S0040-4020(01)96036-3
-
(1991)
Tetrahedron
, vol.47
, pp. 3075
-
-
Nuhrich, A.1
Moulines, J.2
-
18
-
-
0029931939
-
-
doi:10.1016/0040-4039(96)00390-5
-
(h) S. H. Kim, P. L. Fuchs, Tetrahedron Lett. 1996, 37, 2545. doi:10.1016/0040-4039(96)00390-5
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 2545
-
-
Kim, S.H.1
Fuchs, P.L.2
-
20
-
-
0019248696
-
-
doi:10.1002/ANIE.198008191
-
(j) W. Bartmann, G. Beck, J. Knolle, H. R. Rupp, R. Helmut, Angew. Chem. Int. Ed. Engl. 1980, 19, 819. doi:10.1002/ANIE.198008191
-
(1980)
Angew. Chem. Int. Ed. Engl.
, vol.19
, pp. 819
-
-
Bartmann, W.1
Beck, G.2
Knolle, J.3
Rupp, H.R.4
Helmut, R.5
-
21
-
-
0028147903
-
-
(a) R. C. Larock, H. Yang, S. M. Weinreb, R. J. Herr, J. Org. Chem. 1994, 59, 4172.
-
(1994)
J. Org. Chem.
, vol.59
, pp. 4172
-
-
Larock, R.C.1
Yang, H.2
Weinreb, S.M.3
Herr, R.J.4
-
22
-
-
0026445808
-
-
doi:10.1016/S0040-4039(00)61788-4
-
(b) F.-T. Luo, R.-T. Wang, Tetrahedron Lett. 1992, 33, 6835. doi:10.1016/S0040-4039(00)61788-4
-
(1992)
Tetrahedron Lett.
, vol.33
, pp. 6835
-
-
Luo, F.-T.1
Wang, R.-T.2
-
23
-
-
0028886054
-
-
doi:10.1016/0040-4039(95)01878-L
-
A.-D. Callier-Dublanchet, B. Quiclet-Sire, S. Z. Zard, Tetrahedron Lett. 1995, 30, 8791. doi:10.1016/0040-4039(95)01878-L
-
(1995)
Tetrahedron Lett.
, vol.30
, pp. 8791
-
-
Callier-Dublanchet, A.-D.1
Quiclet-Sire, B.2
Zard, S.Z.3
-
24
-
-
10644292333
-
-
note
-
The enumeration of the atoms in the pyrrolidine ring in Scheme 2 was chosen to create consistency throughout this article and is not according to the rules of nomenclature.
-
-
-
-
26
-
-
0030249310
-
-
doi:10.1016/0957-4166(96)00326-6
-
(b) H. Ihibashi, Y. Fuke, T. Yamashita, M. Ikeda, Tetrahedron: Asymmetry 1996, 7, 2531. doi:10.1016/0957-4166(96)00326-6
-
(1996)
Tetrahedron: Asymmetry
, vol.7
, pp. 2531
-
-
Ihibashi, H.1
Fuke, Y.2
Yamashita, T.3
Ikeda, M.4
-
27
-
-
0034625429
-
-
doi:10.1016/S0040-4020(00)00316-1
-
(c) D. T. Davies, N. Kapur, A. F. Parsons, Tetrahedron 2000, 56, 3941. doi:10.1016/S0040-4020(00)00316-1
-
(2000)
Tetrahedron
, vol.56
, pp. 3941
-
-
Davies, D.T.1
Kapur, N.2
Parsons, A.F.3
-
28
-
-
0032507925
-
-
doi:10.1016/S0040-4039(98)00746-1
-
(d) D. T. Davies, N. Kapur, A. F. Parsons, Tetrahedron Lett. 1998, 39, 4397. doi:10.1016/S0040-4039(98)00746-1
-
(1998)
Tetrahedron Lett.
, vol.39
, pp. 4397
-
-
Davies, D.T.1
Kapur, N.2
Parsons, A.F.3
-
29
-
-
10644225010
-
-
note
-
Because of the generally high reactivity of vinyl radicals, the presence of a cycloalkyl 'clamp' is essential in this type of radical cyclization to reduce the conformational degrees of freedom and to force the two substituents close to each other; see ref. [4].
-
-
-
-
30
-
-
37049071800
-
-
doi:10.1039/C39940000719
-
J. M. Barks, D. W. Knight, G. G. Weingarten, J. Chem. Soc., Chem. Commun. 1994, 6, 719. doi:10.1039/C39940000719
-
(1994)
J. Chem. Soc., Chem. Commun.
, vol.6
, pp. 719
-
-
Barks, J.M.1
Knight, D.W.2
Weingarten, G.G.3
-
31
-
-
0008033440
-
-
doi:10.1039/C39870001246
-
0 2.0 V v. SCE (in acetonitrile). E. Baciocchi, T. Del Giacco, S. M. Murgia, G. V. Sebastiani, J. Chem. Soc., Chem. Commun. 1987, 1246. doi:10.1039/C39870001246
-
(1987)
J. Chem. Soc., Chem. Commun.
, pp. 1246
-
-
Baciocchi, E.1
Del Giacco, T.2
Murgia, S.M.3
Sebastiani, G.V.4
-
33
-
-
0041995703
-
-
B. Witulski, M. Gößmann, J. Chem. Soc., Chem. Commun. 1999, 18, 1879.
-
(1999)
J. Chem. Soc., Chem. Commun.
, vol.18
, pp. 1879
-
-
Witulski, B.1
Gößmann, M.2
-
36
-
-
37049108627
-
-
doi:10.1039/P19850000461
-
(a) R. Ramage, D. Hopton, M. J. Parrott, R. S. Richardson, G. W. Kenner, G. A. Moore, J. Chem. Soc., Perkin Trans. 1 1985, 461. doi:10.1039/P19850000461
-
(1985)
J. Chem. Soc., Perkin Trans. 1
, pp. 461
-
-
Ramage, R.1
Hopton, D.2
Parrott, M.J.3
Richardson, R.S.4
Kenner, G.W.5
Moore, G.A.6
-
37
-
-
37049069611
-
-
doi:10.1039/P19930000551
-
(b) D. D. Smith, K. G. Boyd, D. Hopton, R. L. Baxter, R. Ramage, J. Chem. Soc., Perkin Trans. 1 1993, 551. doi:10.1039/P19930000551
-
(1993)
J. Chem. Soc., Perkin Trans. 1
, pp. 551
-
-
Smith, D.D.1
Boyd, K.G.2
Hopton, D.3
Baxter, R.L.4
Ramage, R.5
-
39
-
-
0001453658
-
-
(b) J. Jin, D. T. Smith, S. M. Weinreb, J. Org. Chem. 1995, 60, 5366.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 5366
-
-
Jin, J.1
Smith, D.T.2
Weinreb, S.M.3
-
41
-
-
10644278596
-
-
note
-
From analysis of the NMR data, it appears that the triflate moiety in the major conformer of 16 is parallel to the hexynyl side chain, whereas in the minor conformer, the ethyl and hexynyl chains are parallel.
-
-
-
-
42
-
-
10644236883
-
-
note
-
NMR measurements at elevated temperatures have revealed that the coalescence temperature of 17 must be >50°C.
-
-
-
-
44
-
-
10644243297
-
-
note
-
The reactions were all performed on a semi-preparative scale. The upscaling of photochemical reactions is normally not straight-forward, because, in contrast to thermal reactions, generally a non-linear increase of both reaction time and solvent amount is required. We have observed that the best way to accomplish photo-induced, self-terminating radical oxygenations on preparative scales is by accordingly increasing the number of reaction flasks containing semi-preparative mixtures, irradiating them simultaneously, and combining them for workup; see ref. [6a].
-
-
-
-
45
-
-
10644230774
-
-
note
-
Since all reaction products were oils, no X-ray analyses could be performed to determine the stereochemistry. Conversion into crystalline derivatives provided no alternative, because isomerization of the stereocentres by acid- or base-catalyzed keto-enol tautomerism could not be excluded, which would falsify the results.
-
-
-
-
47
-
-
0000020896
-
-
doi:10.1016/S0040-4020(01)97174-1
-
(a) A. L. J. Beck with, C. H. Schiesser, Tetrahedron 1985, 41, 3925. doi:10.1016/S0040-4020(01)97174-1
-
(1985)
Tetrahedron
, vol.41
, pp. 3925
-
-
Beck, A.L.J.1
Schiesser, C.H.2
-
49
-
-
84970601788
-
-
(c) A. L. J. Beckwith, C. J. Easton, T. Lawrence, A. K. Serelis, Aust. J. Chem. 1983, 36, 545.
-
(1983)
Aust. J. Chem.
, vol.36
, pp. 545
-
-
Beckwith, A.L.J.1
Easton, C.J.2
Lawrence, T.3
Serelis, A.K.4
-
50
-
-
37049091461
-
-
doi:10.1039/C39800000482
-
(d) A. L. J. Beckwith, C. J. Easton, A. K. Serelis, J. Chem. Soc., Chem. Commun. 1980, 482. doi:10.1039/C39800000482
-
(1980)
J. Chem. Soc., Chem. Commun.
, pp. 482
-
-
Beckwith, A.L.J.1
Easton, C.J.2
Serelis, A.K.3
-
51
-
-
37049095082
-
-
doi:10.1039/C39800000484
-
(e) A. L. J. Beckwith, C. J. Easton, T. Lawrence, A. K. Serelis, J. Chem. Soc., Chem. Commun. 1980, 484. doi:10.1039/C39800000484
-
(1980)
J. Chem. Soc., Chem. Commun.
, pp. 484
-
-
Beckwith, A.L.J.1
Easton, C.J.2
Lawrence, T.3
Serelis, A.K.4
-
52
-
-
10644221771
-
-
note
-
3 (either anodic oxidation of lithium nitrate or photolysis of CAN) has any influence on the diastereoselectivity of the cyclization; see refs [2,4].
-
-
-
-
53
-
-
10644269722
-
-
note
-
Because of the partial double bond character of the nitrogen atom due to the amide linkage, the 5-hexenyl chain should be in a somewhat flattened chair configuration in the transition state of the 5-exo cyclization.
-
-
-
-
55
-
-
0346150271
-
-
doi:10.1021/OL035860+
-
The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
-
(2003)
Org. Lett.
, vol.5
, pp. 4689
-
-
Coote, M.L.1
Pross, A.2
Radom, L.3
-
56
-
-
0037453558
-
-
doi:10.1021/JO020650G
-
The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
-
(2003)
J. Org. Chem.
, vol.68
, pp. 3158
-
-
Malsunaga, N.1
Rogers, D.W.2
Zavitsas, A.A.3
-
57
-
-
0035273961
-
-
The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
-
(2001)
J. Chem. Ed.
, vol.78
, pp. 417
-
-
Zavitsas, A.A.1
-
58
-
-
0003402416
-
-
(Wiley-VCH: Weinheim) and ref. [31]
-
The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
-
(1999)
Radikale und Radikalionen in der Organischen Synthese
-
-
Linker, T.1
Schmittel, M.2
-
60
-
-
10644290058
-
-
note
-
3 induced, self-terminating radical oxygenations of 1 (X = O) have revealed that the orientation of the nitrate substituent relative to the 5-hexenyl chain has no influence on the diastereoselectivity of the 5-exo cyclization, when R is a non-polar substituent (i.e. methyl); ref. [7].
-
-
-
-
61
-
-
10644254233
-
-
note
-
Formation of 23 could principally be also explained through a 1,3-HAT, followed by 3-ezo cyclization, according to 3→29→30. However, since a 1,3-HAT in radical chemistry is practically unknown (see ref. [31]), we believe that 23 is formed via two subsequent 1,5-HATs, followed by a 3-exo cyclization, as shown in Scheme 5.
-
-
-
|