메뉴 건너뛰기




Volumn 57, Issue 11, 2004, Pages 1055-1066

NO3 induced self-terminating radical oxygenations: Diastereoselective synthesis of anellated pyrrolidines

Author keywords

[No Author keywords available]

Indexed keywords

COLUMN CHROMATOGRAPHY; ETHERS; HYDROGEN; IRRADIATION; NITROGEN COMPOUNDS; OXIDATION; PHOTOCHEMICAL REACTIONS; REACTION KINETICS;

EID: 10644238098     PISSN: 00049425     EISSN: None     Source Type: Journal    
DOI: 10.1071/CH04124     Document Type: Article
Times cited : (14)

References (61)
  • 3
    • 0033578811 scopus 로고    scopus 로고
    • doi:10.1016/S0040-4020(99)00663-8
    • U. Wille, L. Lietzau, Tetrahedron 1999, 55, 11465. doi:10.1016/S0040-4020(99)00663-8
    • (1999) Tetrahedron , vol.55 , pp. 11465
    • Wille, U.1    Lietzau, L.2
  • 4
    • 0033551813 scopus 로고    scopus 로고
    • doi:10.1016/S0040-4020(99)00564-5
    • U. Wille, L. Lietzau, Tetrahedron 1999, 55, 10119. doi:10.1016/S0040-4020(99)00564-5
    • (1999) Tetrahedron , vol.55 , pp. 10119
    • Wille, U.1    Lietzau, L.2
  • 5
    • 0037126994 scopus 로고    scopus 로고
    • doi: 10.1002/15213765(20020118)8:2<340::AID-CHEM340>3.3.CO;2-W
    • U. Wille, Chem. Eur. J. 2002, 8, 340. doi: 10.1002/15213765(20020118)8:2<340::AID-CHEM340>3.3.CO;2-W
    • (2002) Chem. Eur. J. , vol.8 , pp. 340
    • Wille, U.1
  • 8
    • 0037060053 scopus 로고    scopus 로고
    • doi:10.1016/S0040-4039(01)02398-X
    • (c) U. Wille, Tetrahedron Lett. 2002, 43, 1239. doi:10.1016/S0040-4039(01)02398-X
    • (2002) Tetrahedron Lett. , vol.43 , pp. 1239
    • Wille, U.1
  • 9
    • 0037045245 scopus 로고    scopus 로고
    • doi:10.1021/JA017006O
    • (d) U. Wille, J. Am. Chem. Soc. 2002, 124, 14. doi:10.1021/JA017006O
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 14
    • Wille, U.1
  • 15
    • 0032559961 scopus 로고    scopus 로고
    • doi:10.1016/S0040-4039(98)00345-1
    • (e) H. G. Aurich, M. Soeberdt, Tetrahedron Lett. 1998, 39, 2553. doi:10.1016/S0040-4039(98)00345-1
    • (1998) Tetrahedron Lett. , vol.39 , pp. 2553
    • Aurich, H.G.1    Soeberdt, M.2
  • 17
    • 0026029281 scopus 로고
    • doi:10.1016/S0040-4020(01)96036-3
    • (g) A. Nuhrich, J. Moulines, Tetrahedron 1991, 47, 3075. doi:10.1016/S0040-4020(01)96036-3
    • (1991) Tetrahedron , vol.47 , pp. 3075
    • Nuhrich, A.1    Moulines, J.2
  • 18
    • 0029931939 scopus 로고    scopus 로고
    • doi:10.1016/0040-4039(96)00390-5
    • (h) S. H. Kim, P. L. Fuchs, Tetrahedron Lett. 1996, 37, 2545. doi:10.1016/0040-4039(96)00390-5
    • (1996) Tetrahedron Lett. , vol.37 , pp. 2545
    • Kim, S.H.1    Fuchs, P.L.2
  • 22
    • 0026445808 scopus 로고
    • doi:10.1016/S0040-4039(00)61788-4
    • (b) F.-T. Luo, R.-T. Wang, Tetrahedron Lett. 1992, 33, 6835. doi:10.1016/S0040-4039(00)61788-4
    • (1992) Tetrahedron Lett. , vol.33 , pp. 6835
    • Luo, F.-T.1    Wang, R.-T.2
  • 24
    • 10644292333 scopus 로고    scopus 로고
    • note
    • The enumeration of the atoms in the pyrrolidine ring in Scheme 2 was chosen to create consistency throughout this article and is not according to the rules of nomenclature.
  • 29
    • 10644225010 scopus 로고    scopus 로고
    • note
    • Because of the generally high reactivity of vinyl radicals, the presence of a cycloalkyl 'clamp' is essential in this type of radical cyclization to reduce the conformational degrees of freedom and to force the two substituents close to each other; see ref. [4].
  • 41
    • 10644278596 scopus 로고    scopus 로고
    • note
    • From analysis of the NMR data, it appears that the triflate moiety in the major conformer of 16 is parallel to the hexynyl side chain, whereas in the minor conformer, the ethyl and hexynyl chains are parallel.
  • 42
    • 10644236883 scopus 로고    scopus 로고
    • note
    • NMR measurements at elevated temperatures have revealed that the coalescence temperature of 17 must be >50°C.
  • 44
    • 10644243297 scopus 로고    scopus 로고
    • note
    • The reactions were all performed on a semi-preparative scale. The upscaling of photochemical reactions is normally not straight-forward, because, in contrast to thermal reactions, generally a non-linear increase of both reaction time and solvent amount is required. We have observed that the best way to accomplish photo-induced, self-terminating radical oxygenations on preparative scales is by accordingly increasing the number of reaction flasks containing semi-preparative mixtures, irradiating them simultaneously, and combining them for workup; see ref. [6a].
  • 45
    • 10644230774 scopus 로고    scopus 로고
    • note
    • Since all reaction products were oils, no X-ray analyses could be performed to determine the stereochemistry. Conversion into crystalline derivatives provided no alternative, because isomerization of the stereocentres by acid- or base-catalyzed keto-enol tautomerism could not be excluded, which would falsify the results.
  • 47
    • 0000020896 scopus 로고
    • doi:10.1016/S0040-4020(01)97174-1
    • (a) A. L. J. Beck with, C. H. Schiesser, Tetrahedron 1985, 41, 3925. doi:10.1016/S0040-4020(01)97174-1
    • (1985) Tetrahedron , vol.41 , pp. 3925
    • Beck, A.L.J.1    Schiesser, C.H.2
  • 52
    • 10644221771 scopus 로고    scopus 로고
    • note
    • 3 (either anodic oxidation of lithium nitrate or photolysis of CAN) has any influence on the diastereoselectivity of the cyclization; see refs [2,4].
  • 53
    • 10644269722 scopus 로고    scopus 로고
    • note
    • Because of the partial double bond character of the nitrogen atom due to the amide linkage, the 5-hexenyl chain should be in a somewhat flattened chair configuration in the transition state of the 5-exo cyclization.
  • 55
    • 0346150271 scopus 로고    scopus 로고
    • doi:10.1021/OL035860+
    • The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
    • (2003) Org. Lett. , vol.5 , pp. 4689
    • Coote, M.L.1    Pross, A.2    Radom, L.3
  • 56
    • 0037453558 scopus 로고    scopus 로고
    • doi:10.1021/JO020650G
    • The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
    • (2003) J. Org. Chem. , vol.68 , pp. 3158
    • Malsunaga, N.1    Rogers, D.W.2    Zavitsas, A.A.3
  • 57
    • 0035273961 scopus 로고    scopus 로고
    • The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
    • (2001) J. Chem. Ed. , vol.78 , pp. 417
    • Zavitsas, A.A.1
  • 58
    • 0003402416 scopus 로고    scopus 로고
    • (Wiley-VCH: Weinheim) and ref. [31]
    • The concept of radical stability and stabilization is currently undergoing a complete re-evaluation; see for example: (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689. doi:10.1021/OL035860+ (b) N. Malsunaga, D. W. Rogers, A. A. Zavitsas, J. Org. Chem. 2003, 68, 3158. doi:10.1021/JO020650G (c) A. A. Zavitsas, J. Chem. Ed. 2001, 78, 417. However, stabilization of a reaction centre by acceptor or donor substituents, commonly known as capto or dative effects, respectively, is a well accepted concept in chemistry. In the case of radicals, this stabilization is due to orbital interactions between the SOMO and the HOMO dative) or LUMO (capto), which result in a decrease of the overall energy of the system; see also the following reference. (d) T. Linker, M. Schmittel, Radikale und Radikalionen in der Organischen Synthese 1999 (Wiley-VCH: Weinheim) and ref. [31].
    • (1999) Radikale und Radikalionen in der Organischen Synthese
    • Linker, T.1    Schmittel, M.2
  • 60
    • 10644290058 scopus 로고    scopus 로고
    • note
    • 3 induced, self-terminating radical oxygenations of 1 (X = O) have revealed that the orientation of the nitrate substituent relative to the 5-hexenyl chain has no influence on the diastereoselectivity of the 5-exo cyclization, when R is a non-polar substituent (i.e. methyl); ref. [7].
  • 61
    • 10644254233 scopus 로고    scopus 로고
    • note
    • Formation of 23 could principally be also explained through a 1,3-HAT, followed by 3-ezo cyclization, according to 3→29→30. However, since a 1,3-HAT in radical chemistry is practically unknown (see ref. [31]), we believe that 23 is formed via two subsequent 1,5-HATs, followed by a 3-exo cyclization, as shown in Scheme 5.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.