메뉴 건너뛰기




Volumn 54, Issue 12, 2004, Pages 1506-1515

Combining neural network models to predict spatial patterns of airborne pollutant accumulation in soils around an industrial point emission source

Author keywords

[No Author keywords available]

Indexed keywords

AIR POLLUTION; AIR QUALITY; CORRELATION METHODS; ERROR ANALYSIS; LEAD; SOILS;

EID: 10244240471     PISSN: 10962247     EISSN: 21622906     Source Type: Journal    
DOI: 10.1080/10473289.2004.10471014     Document Type: Article
Times cited : (11)

References (41)
  • 1
    • 0344604541 scopus 로고    scopus 로고
    • Artificial Neural Networks as a Tool in Ecological Modelling: An Introduction
    • Lek, S., Guegan, J.F. Artificial Neural Networks as a Tool in Ecological Modelling: An Introduction; Ecol. Model. 1999, 120, 65-73.
    • (1999) Ecol. Model , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 2
    • 0032146239 scopus 로고    scopus 로고
    • Artificial Neural Networks (The Multilayer Perceptron)-A Review of Applications in the Atmospheric Sciences
    • Gardner, M.W., Dorling, S.R. Artificial Neural Networks (The Multilayer Perceptron)-A Review of Applications in the Atmospheric Sciences; Atmos. Environ. 1998, 32, 2627-2636.
    • (1998) Atmos. Environ , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 3
    • 0036134847 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks to Modeling the Transport and Dispersion of Tracers in Complex Terrain
    • Podnar, D., Koracin, D., Panorska, A. Application of Artificial Neural Networks to Modeling the Transport and Dispersion of Tracers in Complex Terrain; Atmos. Environ. 2002, 36, 561-570.
    • (2002) Atmos. Environ , vol.36 , pp. 561-570
    • Podnar, D.1    Koracin, D.2    Panorska, A.3
  • 4
    • 0034164401 scopus 로고    scopus 로고
    • Neural Network Model for Predicting Peak Photochemical Pollutant Levels
    • Melas, D., Kioutsoukis, I., Ziomas, I.C. Neural Network Model for Predicting Peak Photochemical Pollutant Levels; J. Air & Waste Manage. Assoc. 2000, 50, 495-501.
    • (2000) J. Air & Waste Manage. Assoc , vol.50 , pp. 495-501
    • Melas, D.1    Kioutsoukis, I.2    Ziomas, I.C.3
  • 5
    • 0031172117 scopus 로고    scopus 로고
    • Comparing Neural Networks and Regression Models for Ozone Forecasting
    • Comrie, A.C. Comparing Neural Networks and Regression Models for Ozone Forecasting; J. Air & Waste Manage. Assoc. 1997, 47, 653-663.
    • (1997) J. Air & Waste Manage. Assoc , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 6
    • 0034895854 scopus 로고    scopus 로고
    • Artificial Neural Network-Derived Trends in Daily Maximum Surface Ozone Concentrations
    • Gardner, M.W., Dorling, S.R. Artificial Neural Network-Derived Trends in Daily Maximum Surface Ozone Concentrations; J. Air & Waste Manage. Assoc. 2001, 51, 1202-1210.
    • (2001) J. Air & Waste Manage. Assoc , vol.51 , pp. 1202-1210
    • Gardner, M.W.1    Dorling, S.R.2
  • 7
    • 0030272524 scopus 로고    scopus 로고
    • Simple Neural Network for Estimating Emission Rates of Hydrogen Sulfide and Ammonia from Single Point Sources
    • Rege, M.A., Tock, R.W.A. Simple Neural Network for Estimating Emission Rates of Hydrogen Sulfide and Ammonia from Single Point Sources; J. Air & Waste Manage. Assoc. 1996, 46, 953-962.
    • (1996) J. Air & Waste Manage. Assoc , vol.46 , pp. 953-962
    • Rege, M.A.1    Tock, R.W.A.2
  • 8
    • 0033578441 scopus 로고    scopus 로고
    • Neural Network Models to Study Relationships between Lead Concentration in Grasses and Permanent Urban Descriptors in Athens City (Greece)
    • Dimopoulos, J., Chronopoulos, J., Chronopoulou-Sereli, A., Lek, S. Neural Network Models to Study Relationships between Lead Concentration in Grasses and Permanent Urban Descriptors in Athens City (Greece); Ecol. Model. 1999, 120, 157-165.
    • (1999) Ecol. Model , vol.120 , pp. 157-165
    • Dimopoulos, J.1    Chronopoulos, J.2    Chronopoulou-Sereli, A.3    Lek, S.4
  • 9
    • 0037674994 scopus 로고    scopus 로고
    • An Application of Parametric and Non-Parametric Models to the Assessment of Fluoride Levels in Vegetation Exposed to Stack Emissions of an Aluminum Reduction Plant in Greece
    • Assoc
    • Dimopoulos, I., Tsiros, I., Serelis, K., Kamoutsis, A., Chronopoulou, A. An Application of Parametric and Non-Parametric Models to the Assessment of Fluoride Levels in Vegetation Exposed to Stack Emissions of an Aluminum Reduction Plant in Greece; J. Air & Waste Manage. Assoc. 2003, 53, 396-405.
    • (2003) J. Air & Waste Manage. , vol.53 , pp. 396-405
    • Dimopoulos, I.1    Tsiros, I.2    Serelis, K.3    Kamoutsis, A.4    Chronopoulou, A.5
  • 10
    • 0141619212 scopus 로고    scopus 로고
    • A Preliminary Study of the Application of Some Predictive Modeling Techniques to Assess Atmospheric Mercury Emissions from Terrestrial Surfaces
    • Tsiros, I., Dimopoulos, I. A Preliminary Study of the Application of Some Predictive Modeling Techniques to Assess Atmospheric Mercury Emissions from Terrestrial Surfaces; J. Environ. Sci. Health A 2003, 38 (11), 2495-2508.
    • (2003) J. Environ. Sci. Health A , vol.38 , Issue.11 , pp. 2495-2508
    • Tsiros, I.1    Dimopoulos, I.2
  • 11
    • 0003257214 scopus 로고
    • Prediction Risk and Architecture Selection for Neural Networks
    • Cherkassky, V., Friedman, J.H., Wechsler, H., Eds., Springer-Verlag: Berlin
    • Moody, J. Prediction Risk and Architecture Selection for Neural Networks. In From Statistics to Neural Networks. Theory and Pattern Recognition Applications; Cherkassky, V., Friedman, J.H., Wechsler, H., Eds., Springer-Verlag: Berlin, 1994; pp 147-165.
    • (1994) From Statistics to Neural Networks. Theory and Pattern Recognition Applications , pp. 147-165
    • Moody, J.1
  • 12
    • 0029372769 scopus 로고
    • Methods for Combining Expert's Probability Assessments
    • Jacobs, R.A. Methods for Combining Expert's Probability Assessments; Neural Comput. 1995, 7 (5), 867-888.
    • (1995) Neural Comput , vol.7 , Issue.5 , pp. 867-888
    • Jacobs, R.A.1
  • 13
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with Noise: An Effective Regularization Technique
    • Raviv, Y., Intrator, N. Bootstrapping with Noise: An Effective Regularization Technique; Connection Sci. 1996, 8 (3&4), 356-372.
    • (1996) Connection Sci , vol.8 , Issue.3-4 , pp. 356-372
    • Raviv, Y.1    Intrator, N.2
  • 14
    • 85054435084 scopus 로고
    • Neural Network Ensembles, Cross Validation and Active Learning
    • Tesauro, G., Touretzky, D.S., Leen, T.K., Eds., MIT Press: Cambridge, MA
    • Krogh, A., Vedelsby, J. Neural Network Ensembles, Cross Validation and Active Learning. In Advances in Neural Information Processing Systems 7; Tesauro, G., Touretzky, D.S., Leen, T.K., Eds., MIT Press: Cambridge, MA, 1995; pp 231-238.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 15
    • 85127438349 scopus 로고
    • Learning with Ensembles: How Overfitting Can Be Useful
    • Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds., MIT Press: Cambridge, MA
    • Krogh, A., Sollich, P. Learning with Ensembles: How Overfitting Can Be Useful. In Advances in Neural Information Processing Systems 8; Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds., MIT Press: Cambridge, MA, 1995; pp 190-196.
    • (1995) Advances in Neural Information Processing Systems 8 , pp. 190-196
    • Krogh, A.1    Sollich, P.2
  • 16
    • 0001066312 scopus 로고    scopus 로고
    • Optimal Ensemble Averaging of Neural Networks
    • Naftaly, U., Intrator, N., Horn, D. Optimal Ensemble Averaging of Neural Networks; Network 1997, 8 (3), 283-296.
    • (1997) Network , vol.8 , Issue.3 , pp. 283-296
    • Naftaly, U.1    Intrator, N.2    Horn, D.3
  • 17
    • 0000926506 scopus 로고
    • When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
    • Mammone, R.J., Ed., Chapman & Hall: London
    • Perrone, M.P., Cooper, L.N. When Networks Disagree: Ensemble Methods for Hybrid Neural Networks. In NeuralNetworks forSpeech and Image Processing; Mammone, R.J., Ed., Chapman & Hall: London, 1993; pp 126-142.
    • (1993) Neuralnetworks Forspeech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 19
    • 0033745169 scopus 로고    scopus 로고
    • Joint Medium-Range Ensembles from the Met. Office and ECMWF Systems
    • Evans, R.E., Harrison, M.S.J., Graham, R. Joint Medium-Range Ensembles from the Met. Office and ECMWF Systems; Mon. Wea. Rev. 2000, 128, 3104-3127.
    • (2000) Mon. Wea. Rev , vol.128 , pp. 3104-3127
    • Evans, R.E.1    Harrison, M.S.J.2    Graham, R.3
  • 20
    • 0034145096 scopus 로고    scopus 로고
    • Forecasting Summertime Surface-Level Ozone Concentrations in the Lower Fraser Valley of British Columbia: An Ensemble Neural Network Approach
    • Cannon, A.J., Lord, E.R. Forecasting Summertime Surface-Level Ozone Concentrations in the Lower Fraser Valley of British Columbia: An Ensemble Neural Network Approach; J. Air & Waste Manage. Assoc. 2000, 50, 322-339.
    • (2000) J. Air & Waste Manage. Assoc , vol.50 , pp. 322-339
    • Cannon, A.J.1    Lord, E.R.2
  • 21
    • 0038355080 scopus 로고    scopus 로고
    • An Ensemble Air-Quality Forecast over Western Europe during an Ozone Episode
    • Delle Monache, L., Stull, R.B. An Ensemble Air-Quality Forecast over Western Europe during an Ozone Episode; Atmos. Environ. 2003, 37, 3469-3474.
    • (2003) Atmos. Environ , vol.37 , pp. 3469-3474
    • Delle Monache, L.1    Stull, R.B.2
  • 22
    • 0035269485 scopus 로고    scopus 로고
    • A More Extensive Investigation of the Use of Ensemble Forecasts for Dispersion Model Evaluation
    • Straume, A.G. A More Extensive Investigation of the Use of Ensemble Forecasts for Dispersion Model Evaluation; J. Appl. Meteor. 2001, 40, 425-445.
    • (2001) J. Appl. Meteor , vol.40 , pp. 425-445
    • Straume, A.G.1
  • 23
    • 0036573615 scopus 로고    scopus 로고
    • Ensemble Simulation with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations
    • Warner, T.T., Sheu, R.S., Bowers, J.F., Sykes, R.I., Dodd, G.C., Henn, D.S. Ensemble Simulation with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations; J. Appl. Meteor. 2002, 41, 488-504.
    • (2002) J. Appl. Meteor , vol.41 , pp. 488-504
    • Warner, T.T.1    Sheu, R.S.2    Bowers, J.F.3    Sykes, R.I.4    Dodd, G.C.5    Henn, D.S.6
  • 24
    • 2142855763 scopus 로고    scopus 로고
    • Methodology for the Statistical and Spatial Assessment of Soil Contamination around Mining Districts
    • Korre, A., Durucan, S.A. Methodology for the Statistical and Spatial Assessment of Soil Contamination around Mining Districts; Trans. Inst. Min. Metall. A 1999, 108, 181-191.
    • (1999) Trans. Inst. Min. Metall. A , vol.108 , pp. 181-191
    • Korre, A.1    Durucan, S.A.2
  • 26
    • 0036081331 scopus 로고    scopus 로고
    • Quantitative-Spatial Assessment of the Risks Associated with High Pb Loads in Soils around Lavrio, Greece
    • Korre, A., Durucan, S., Koutroumani, A. Quantitative-Spatial Assessment of the Risks Associated with High Pb Loads in Soils around Lavrio, Greece; Appl. Geochem. 2002, 17 (8), 1029-1045.
    • (2002) Appl. Geochem , vol.17 , Issue.8 , pp. 1029-1045
    • Korre, A.1    Durucan, S.2    Koutroumani, A.3
  • 31
    • 0000513303 scopus 로고
    • Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction
    • Moody, J.E., Hanson, S.J., Lippmann, R.P., Eds., Morgan Kaufmann: San Mateo, CA
    • Moody, J.E., Utans, J. Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction. In Advances in Neural Information Processing Systems 4; Moody, J.E., Hanson, S.J., Lippmann, R.P., Eds., Morgan Kaufmann: San Mateo, CA, 1992; pp 683-690.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 683-690
    • Moody, J.E.1    Utans, J.2
  • 32
    • 0002206019 scopus 로고
    • Use of Some Sensitivity Criteria for Choosing Networks with Good Generalization Ability
    • Dimopoulos, J., Bourret, P., Lek, S. Use of Some Sensitivity Criteria for Choosing Networks with Good Generalization Ability; Neural Process. Lett. 1995, 2 (6), 1-4.
    • (1995) Neural Process. Lett , vol.2 , Issue.6 , pp. 1-4
    • Dimopoulos, J.1    Bourret, P.2    Lek, S.3
  • 33
    • 0030372023 scopus 로고    scopus 로고
    • On Combining Artificial Neural Nets
    • Sharkey, A.J.C. On Combining Artificial Neural Nets; Connection Sci. 1996, 8 (3&4), 299-314.
    • (1996) Connection Sci , vol.8 , Issue.3-4 , pp. 299-314
    • Sharkey, A.J.C.1
  • 34
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. Bagging Predictors; Machine Learn. 1996, 24, 123-140.
    • (1996) Machine Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 36
    • 0000459353 scopus 로고    scopus 로고
    • Stacked Generalization
    • Wolpert, D.H. Stacked Generalization; Neural Networks 1996, 8, 1341-1390.
    • (1996) Neural Networks , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 37
    • 0010272483 scopus 로고
    • Ph.D. Thesis, School of Industrial Engineering, Purdue University, West Lafayette, IN
    • Hashem, S. Optimal Linear Combinations of Neural Networks. Ph.D. Thesis, School of Industrial Engineering, Purdue University, West Lafayette, IN, 1993.
    • (1993) Optimal Linear Combinations of Neural Networks.
    • Hashem, S.1
  • 38
    • 0029663838 scopus 로고    scopus 로고
    • Heavy Metal Pollution in the Vicinity of a Secondary Lead Smelter in the Czech Republic
    • Rieuwerts, J., Farago, M. Heavy Metal Pollution in the Vicinity of a Secondary Lead Smelter in the Czech Republic; Appl. Geochem. 1996, 11, 17-23.
    • (1996) Appl. Geochem , vol.11 , pp. 17-23
    • Rieuwerts, J.1    Farago, M.2
  • 39
    • 0028486405 scopus 로고
    • Lead, Cadmium, Arsenic and Zinc in the Ecosystem Surrounding a Lead Smelter
    • Pilgrim, W., Hughes, R.N. Lead, Cadmium, Arsenic and Zinc in the Ecosystem Surrounding a Lead Smelter; Environ. Monitor. Assess. 1994, 32, 1-20.
    • (1994) Environ. Monitor. Assess , vol.32 , pp. 1-20
    • Pilgrim, W.1    Hughes, R.N.2
  • 40
    • 0004096460 scopus 로고    scopus 로고
    • The NeuralBAG Algorithm: Optimizing Generalization Performance in Bagged Neural Networks
    • Verleysen, M., Ed., D-Facto: Bruges, Belgium
    • Carney, J.G., Cunningham, P. The NeuralBAG Algorithm: Optimizing Generalization Performance in Bagged Neural Networks. In Proceedings of the 7th European Symposium on Artificial Neural Networks; Verleysen, M., Ed., D-Facto: Bruges, Belgium, 1999; pp 135-140.
    • (1999) Proceedings of the 7Th European Symposium on Artificial Neural Networks , pp. 135-140
    • Carney, J.G.1    Cunningham, P.2
  • 41
    • 85156192015 scopus 로고    scopus 로고
    • Generating Accurate and Diverse Members of a Neural Network Ensemble
    • Touretzky, D., Mozer, M., Hasselmo, M., Eds., MIT Press: Cambridge, MA
    • Opitz, D., Shavlik, J. Generating Accurate and Diverse Members of a Neural Network Ensemble. In Advances in Neural Information Processing Systems 8; Touretzky, D., Mozer, M., Hasselmo, M., Eds., MIT Press: Cambridge, MA, 1996; pp 535-541.
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 535-541
    • Opitz, D.1    Shavlik, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.