-
1
-
-
0018466808
-
Quantitative design and evaluation of enhancement thresholding edge detectors
-
Abdou, I.E., Pratt, W.K., 1979. Quantitative design and evaluation of enhancement thresholding edge detectors. Proc. IEEE. 67 (5), 753-763.
-
(1979)
Proc. IEEE.
, vol.67
, Issue.5
, pp. 753-763
-
-
Abdou, I.E.1
Pratt, W.K.2
-
2
-
-
0036662756
-
Brightness-independent startup routine for star trackers
-
Accardo, D., Rufino, G., 2002a. Brightness-independent startup routine for star trackers. IEEE Aerospace Electron. Systems 38 (3), 813-823.
-
(2002)
IEEE Aerospace Electron. Systems
, vol.38
, Issue.3
, pp. 813-823
-
-
Accardo, D.1
Rufino, G.2
-
3
-
-
2942749050
-
Star field feature characterization for initial acquisition by neural networks
-
Accardo, D., Rufino, O., 2002b. Star field feature characterization for initial acquisition by neural networks. In: IEEE on Aerospace Conf. Proc., pp. 2319-2330.
-
(2002)
IEEE on Aerospace Conf. Proc.
, pp. 2319-2330
-
-
Accardo, D.1
Rufino, O.2
-
4
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman, M.A., Braverman, K.M., Rozono'er, L.I., 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automat. Remote Control 25, 821-837.
-
(1964)
Automat. Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, K.M.2
Rozono'er, L.I.3
-
5
-
-
0030275154
-
Spacecraft attitude control using star field trackers
-
Birnbaum, M.M., 1996. Spacecraft attitude control using star field trackers. Acta Astronaut. 39 (9-12), 763-773.
-
(1996)
Acta Astronaut
, vol.39
, Issue.9-12
, pp. 763-773
-
-
Birnbaum, M.M.1
-
6
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Colt, D. (Ed.), Haussler, Pittsburgh, PA. ACM Press
-
Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Colt, D. (Ed.), 5th Annual ACM Workshop, Haussler, Pittsburgh, PA. ACM Press, pp. 144-152.
-
(1992)
5th Annual ACM Workshop
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
7
-
-
0032646902
-
Reconfigurable pipelined 2-D convolvers for fast digital signal processing
-
Bosi, B., Bois, G., Savaria, Y., 1999. Reconfigurable pipelined 2-D convolvers for fast digital signal processing. IEEE VLSI Systems 7 (3), 299-308.
-
(1999)
IEEE VLSI Systems
, vol.7
, Issue.3
, pp. 299-308
-
-
Bosi, B.1
Bois, G.2
Savaria, Y.3
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Knowl. Discov. Data Min. 2, 121-167.
-
(1998)
Knowl. Discov. Data Min.
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
0037230867
-
Efficient computations for large least square support vector machine classifiers
-
Chua, K.S., 2003. Efficient computations for large least square support vector machine classifiers. Pattern Recognition Lett. 24 (1-3), 75-80.
-
(2003)
Pattern Recognition Lett.
, vol.24
, Issue.1-3
, pp. 75-80
-
-
Chua, K.S.1
-
10
-
-
0034225296
-
Small field-of-view star identification using Bayesian decision theory
-
Clouse, D.S., Padgett, C.W., 2000. Small field-of-view star identification using Bayesian decision theory. IEEE Aerospace Electron. System 36 (3), 773-783.
-
(2000)
IEEE Aerospace Electron. System
, vol.36
, Issue.3
, pp. 773-783
-
-
Clouse, D.S.1
Padgett, C.W.2
-
11
-
-
34249753618
-
Support vector networks
-
Cortes, C., Vapnik, V., 1995. Support vector networks. Machine Learn. 20, 273-297.
-
(1995)
Machine Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
84952793749
-
Support vector machines trained by linear programming: Theory and application in image compression and data classification
-
NEUREL
-
Hadzic, I., Kecman, V., 2000. Support vector machines trained by linear programming: Theory and application in image compression and data classification. In: Proc. of the 5th Seminar on Neural Network App. in Elec. Eng., NEUREL, pp. 18-23.
-
(2000)
Proc. of the 5th Seminar on Neural Network App. in Elec. Eng.
, pp. 18-23
-
-
Hadzic, I.1
Kecman, V.2
-
13
-
-
0034228699
-
Neural-network-based autonomous star identification algorithm
-
Hong, J., Dickenson, J.A., 2000. Neural-network-based autonomous star identification algorithm. J. Guidance Control Dynam. 23 (4), 728-735.
-
(2000)
J. Guidance Control Dynam.
, vol.23
, Issue.4
, pp. 728-735
-
-
Hong, J.1
Dickenson, J.A.2
-
14
-
-
0032653928
-
Image compression with neural networks - A survey
-
Jiang, J., 1999. Image compression with neural networks - A survey. Signal Process.: Image Comm. 14 (9), 737-760.
-
(1999)
Signal Process.: Image Comm.
, vol.14
, Issue.9
, pp. 737-760
-
-
Jiang, J.1
-
18
-
-
0034860639
-
Adaptive kernel methods for CDMA systems
-
Kuh, A., 2001. Adaptive kernel methods for CDMA systems. Proc. Neural Networks 4, 2404-2409.
-
(2001)
Proc. Neural Networks
, vol.4
, pp. 2404-2409
-
-
Kuh, A.1
-
20
-
-
0025385606
-
2-D systolic arrays for realization of 2-D convolution
-
Kwan, H.-K., Okullo-Oballa, T.S., 1990.2-D systolic arrays for realization of 2-D convolution. IEEE Trans. Circuits Systems 37 (2), 267-273.
-
(1990)
IEEE Trans. Circuits Systems
, vol.37
, Issue.2
, pp. 267-273
-
-
Kwan, H.-K.1
Okullo-Oballa, T.S.2
-
21
-
-
0036544252
-
Accuracy performance of star trackers - A tutorial
-
Liebe, C.C., 2002. Accuracy performance of star trackers - A tutorial. IEEE Trans. Aerospace Electron. System 38 (2), 587-599.
-
(2002)
IEEE Trans. Aerospace Electron. System
, vol.38
, Issue.2
, pp. 587-599
-
-
Liebe, C.C.1
-
22
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer, J., 1909. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. London A 209, 415-446.
-
(1909)
Philos. Trans. Roy. Soc. London A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
23
-
-
34250122797
-
Interpolation of scattered data: Distance matrices and conditionally positive definite functions
-
Micchelli, C.A., 1986. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Construct. Approx. 2, 11-22.
-
(1986)
Construct. Approx.
, vol.2
, pp. 11-22
-
-
Micchelli, C.A.1
-
24
-
-
10044277470
-
StarNav III: A three fields of view star tracker
-
Motari, D., Romoli, A., Difesa, A., 2002. StarNav III: A three fields of view star tracker. In: IEEE on Aerospace Conf. Proc., pp. 47-57.
-
(2002)
IEEE on Aerospace Conf. Proc.
, pp. 47-57
-
-
Motari, D.1
Romoli, A.2
Difesa, A.3
-
25
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12 (2), 181-201.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
26
-
-
0030783930
-
Grid' algorithm' for autonomous star identification
-
Padgett, C., Kreutz-Delgado, K., 1997. Grid' algorithm' for autonomous star identification. EEE Aerospace Electron. Systems 33(1), 202-213.
-
(1997)
EEE Aerospace Electron. Systems
, vol.33
, Issue.1
, pp. 202-213
-
-
Padgett, C.1
Kreutz-Delgado, K.2
-
27
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Schölkopf, B., et al. (Eds.), MIT Press, Cambridge, MA
-
Platt, J., 1999. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., et al. (Eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
28
-
-
0016765357
-
On optimal nonlinear associative recall
-
Póggio, T., 1975. On optimal nonlinear associative recall. Biol. Cybernet. 19, 201-209.
-
(1975)
Biol. Cybernet.
, vol.19
, pp. 201-209
-
-
Póggio, T.1
-
29
-
-
0038217078
-
Enhancement of the centroiding algorithm for star tracker measure refinement
-
Rufino, G., Accardo, D., 2003. Enhancement of the centroiding algorithm for star tracker measure refinement. Acta Astronaut. 53 (2), 135-147.
-
(2003)
Acta Astronaut.
, vol.53
, Issue.2
, pp. 135-147
-
-
Rufino, G.1
Accardo, D.2
-
30
-
-
0036086881
-
Improved SVM regression using mixtures of kernels
-
Smits, G.F., Jordaan, E.M., 2002. Improved SVM regression using mixtures of kernels. In: Proc. of IJCNN '02 on Neural Networks, vol. 3, pp. 2785-2790.
-
(2002)
Proc. of IJCNN '02 on Neural Networks
, vol.3
, pp. 2785-2790
-
-
Smits, G.F.1
Jordaan, E.M.2
-
31
-
-
0004240479
-
-
Ph.D. thesis, GMD, Birlinghoven
-
Smola, A., 1999. Learning with kernels. Ph.D. thesis, GMD, Birlinghoven.
-
(1999)
Learning with Kernels
-
-
Smola, A.1
-
32
-
-
0035181296
-
Optimal control by least squares support vector machines
-
Suykens, J.A.K, Vandewalle, J., De Moor, B., 2001. Optimal control by least squares support vector machines, Neural Networks 14 (1), 23-25.
-
(2001)
Neural Networks
, vol.14
, Issue.1
, pp. 23-25
-
-
Suykens, J.A.K.1
Vandewalle, J.2
De Moor, B.3
-
33
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural Process. Lett. 9 (3), 293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
34
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J., 2002a. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 48 (1-4), 85-105.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
35
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, J., Vandewalle, J., 2002b. Least Squares Support Vector Machines. World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, J.4
Vandewalle, J.5
-
36
-
-
0035392694
-
Financial time series prediction using least squares support vector machines within the evidence framework
-
Special Issue on Neural Networks in Financial Engineering
-
Van Gestel, T., Suykens, J., Baestaens, D., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J., 2001. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Trans. Neural Networks 12 (4), 809-821, Special Issue on Neural Networks in Financial Engineering.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.2
Baestaens, D.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
39
-
-
0002660750
-
The support vector method of function estimation
-
Suykeos, J.A.K., Vandewalle, J. (Eds.), Kluwer Academic Publishers, Boston
-
Vapnik, V., 1998b. The support vector method of function estimation. In: Suykeos, J.A.K., Vandewalle, J. (Eds.), Nonlinear Modeling: Advanced Black-Box Techniques. Kluwer Academic Publishers, Boston, pp. 55-85.
-
(1998)
Nonlinear Modeling: Advanced Black-Box Techniques
, pp. 55-85
-
-
Vapnik, V.1
-
40
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Mozer, M., Jordan, M., Petsche, T. (Eds.). MIT Press, Cambridge, MA
-
Vapnik, V., Golowich, S., Smola, A., 1997. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (Eds.). The Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, pp. 281-287.
-
(1997)
The Advances in Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
|