메뉴 건너뛰기




Volumn 26, Issue 2, 2005, Pages 147-165

An efficient star acquisition method based on SVM with mixtures of kernels

Author keywords

Least squares support vector machine (LS SVM); Maximum extremum intensity pixels; Mixtures of kernels; Second order directional derivative operators; Star acquisition; Star tracker

Indexed keywords

ALGORITHMS; ASTROPHYSICS; CHARGE COUPLED DEVICES; IMAGE ANALYSIS; NEURAL NETWORKS; POLYNOMIALS; SCANNING; SPURIOUS SIGNAL NOISE; TRACKING (POSITION);

EID: 10044233766     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2004.09.003     Document Type: Article
Times cited : (32)

References (40)
  • 1
    • 0018466808 scopus 로고
    • Quantitative design and evaluation of enhancement thresholding edge detectors
    • Abdou, I.E., Pratt, W.K., 1979. Quantitative design and evaluation of enhancement thresholding edge detectors. Proc. IEEE. 67 (5), 753-763.
    • (1979) Proc. IEEE. , vol.67 , Issue.5 , pp. 753-763
    • Abdou, I.E.1    Pratt, W.K.2
  • 2
    • 0036662756 scopus 로고    scopus 로고
    • Brightness-independent startup routine for star trackers
    • Accardo, D., Rufino, G., 2002a. Brightness-independent startup routine for star trackers. IEEE Aerospace Electron. Systems 38 (3), 813-823.
    • (2002) IEEE Aerospace Electron. Systems , vol.38 , Issue.3 , pp. 813-823
    • Accardo, D.1    Rufino, G.2
  • 3
    • 2942749050 scopus 로고    scopus 로고
    • Star field feature characterization for initial acquisition by neural networks
    • Accardo, D., Rufino, O., 2002b. Star field feature characterization for initial acquisition by neural networks. In: IEEE on Aerospace Conf. Proc., pp. 2319-2330.
    • (2002) IEEE on Aerospace Conf. Proc. , pp. 2319-2330
    • Accardo, D.1    Rufino, O.2
  • 4
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M.A., Braverman, K.M., Rozono'er, L.I., 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automat. Remote Control 25, 821-837.
    • (1964) Automat. Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, K.M.2    Rozono'er, L.I.3
  • 5
    • 0030275154 scopus 로고    scopus 로고
    • Spacecraft attitude control using star field trackers
    • Birnbaum, M.M., 1996. Spacecraft attitude control using star field trackers. Acta Astronaut. 39 (9-12), 763-773.
    • (1996) Acta Astronaut , vol.39 , Issue.9-12 , pp. 763-773
    • Birnbaum, M.M.1
  • 6
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Colt, D. (Ed.), Haussler, Pittsburgh, PA. ACM Press
    • Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Colt, D. (Ed.), 5th Annual ACM Workshop, Haussler, Pittsburgh, PA. ACM Press, pp. 144-152.
    • (1992) 5th Annual ACM Workshop , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 7
    • 0032646902 scopus 로고    scopus 로고
    • Reconfigurable pipelined 2-D convolvers for fast digital signal processing
    • Bosi, B., Bois, G., Savaria, Y., 1999. Reconfigurable pipelined 2-D convolvers for fast digital signal processing. IEEE VLSI Systems 7 (3), 299-308.
    • (1999) IEEE VLSI Systems , vol.7 , Issue.3 , pp. 299-308
    • Bosi, B.1    Bois, G.2    Savaria, Y.3
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Knowl. Discov. Data Min. 2, 121-167.
    • (1998) Knowl. Discov. Data Min. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • Chua, K.S., 2003. Efficient computations for large least square support vector machine classifiers. Pattern Recognition Lett. 24 (1-3), 75-80.
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.1-3 , pp. 75-80
    • Chua, K.S.1
  • 10
    • 0034225296 scopus 로고    scopus 로고
    • Small field-of-view star identification using Bayesian decision theory
    • Clouse, D.S., Padgett, C.W., 2000. Small field-of-view star identification using Bayesian decision theory. IEEE Aerospace Electron. System 36 (3), 773-783.
    • (2000) IEEE Aerospace Electron. System , vol.36 , Issue.3 , pp. 773-783
    • Clouse, D.S.1    Padgett, C.W.2
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., Vapnik, V., 1995. Support vector networks. Machine Learn. 20, 273-297.
    • (1995) Machine Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 84952793749 scopus 로고    scopus 로고
    • Support vector machines trained by linear programming: Theory and application in image compression and data classification
    • NEUREL
    • Hadzic, I., Kecman, V., 2000. Support vector machines trained by linear programming: Theory and application in image compression and data classification. In: Proc. of the 5th Seminar on Neural Network App. in Elec. Eng., NEUREL, pp. 18-23.
    • (2000) Proc. of the 5th Seminar on Neural Network App. in Elec. Eng. , pp. 18-23
    • Hadzic, I.1    Kecman, V.2
  • 13
    • 0034228699 scopus 로고    scopus 로고
    • Neural-network-based autonomous star identification algorithm
    • Hong, J., Dickenson, J.A., 2000. Neural-network-based autonomous star identification algorithm. J. Guidance Control Dynam. 23 (4), 728-735.
    • (2000) J. Guidance Control Dynam. , vol.23 , Issue.4 , pp. 728-735
    • Hong, J.1    Dickenson, J.A.2
  • 14
    • 0032653928 scopus 로고    scopus 로고
    • Image compression with neural networks - A survey
    • Jiang, J., 1999. Image compression with neural networks - A survey. Signal Process.: Image Comm. 14 (9), 737-760.
    • (1999) Signal Process.: Image Comm. , vol.14 , Issue.9 , pp. 737-760
    • Jiang, J.1
  • 18
    • 0034860639 scopus 로고    scopus 로고
    • Adaptive kernel methods for CDMA systems
    • Kuh, A., 2001. Adaptive kernel methods for CDMA systems. Proc. Neural Networks 4, 2404-2409.
    • (2001) Proc. Neural Networks , vol.4 , pp. 2404-2409
    • Kuh, A.1
  • 20
    • 0025385606 scopus 로고
    • 2-D systolic arrays for realization of 2-D convolution
    • Kwan, H.-K., Okullo-Oballa, T.S., 1990.2-D systolic arrays for realization of 2-D convolution. IEEE Trans. Circuits Systems 37 (2), 267-273.
    • (1990) IEEE Trans. Circuits Systems , vol.37 , Issue.2 , pp. 267-273
    • Kwan, H.-K.1    Okullo-Oballa, T.S.2
  • 21
    • 0036544252 scopus 로고    scopus 로고
    • Accuracy performance of star trackers - A tutorial
    • Liebe, C.C., 2002. Accuracy performance of star trackers - A tutorial. IEEE Trans. Aerospace Electron. System 38 (2), 587-599.
    • (2002) IEEE Trans. Aerospace Electron. System , vol.38 , Issue.2 , pp. 587-599
    • Liebe, C.C.1
  • 22
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer, J., 1909. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. London A 209, 415-446.
    • (1909) Philos. Trans. Roy. Soc. London A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 23
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • Micchelli, C.A., 1986. Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Construct. Approx. 2, 11-22.
    • (1986) Construct. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 26
    • 0030783930 scopus 로고    scopus 로고
    • Grid' algorithm' for autonomous star identification
    • Padgett, C., Kreutz-Delgado, K., 1997. Grid' algorithm' for autonomous star identification. EEE Aerospace Electron. Systems 33(1), 202-213.
    • (1997) EEE Aerospace Electron. Systems , vol.33 , Issue.1 , pp. 202-213
    • Padgett, C.1    Kreutz-Delgado, K.2
  • 27
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf, B., et al. (Eds.), MIT Press, Cambridge, MA
    • Platt, J., 1999. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., et al. (Eds.), Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA, pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 28
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • Póggio, T., 1975. On optimal nonlinear associative recall. Biol. Cybernet. 19, 201-209.
    • (1975) Biol. Cybernet. , vol.19 , pp. 201-209
    • Póggio, T.1
  • 29
    • 0038217078 scopus 로고    scopus 로고
    • Enhancement of the centroiding algorithm for star tracker measure refinement
    • Rufino, G., Accardo, D., 2003. Enhancement of the centroiding algorithm for star tracker measure refinement. Acta Astronaut. 53 (2), 135-147.
    • (2003) Acta Astronaut. , vol.53 , Issue.2 , pp. 135-147
    • Rufino, G.1    Accardo, D.2
  • 31
  • 32
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens, J.A.K, Vandewalle, J., De Moor, B., 2001. Optimal control by least squares support vector machines, Neural Networks 14 (1), 23-25.
    • (2001) Neural Networks , vol.14 , Issue.1 , pp. 23-25
    • Suykens, J.A.K.1    Vandewalle, J.2    De Moor, B.3
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neural Process. Lett. 9 (3), 293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 34
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J., 2002a. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 48 (1-4), 85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 36
    • 0035392694 scopus 로고    scopus 로고
    • Financial time series prediction using least squares support vector machines within the evidence framework
    • Special Issue on Neural Networks in Financial Engineering
    • Van Gestel, T., Suykens, J., Baestaens, D., Lambrechts, A., Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J., 2001. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Trans. Neural Networks 12 (4), 809-821, Special Issue on Neural Networks in Financial Engineering.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.4 , pp. 809-821
    • Van Gestel, T.1    Suykens, J.2    Baestaens, D.3    Lambrechts, A.4    Lanckriet, G.5    Vandaele, B.6    De Moor, B.7    Vandewalle, J.8
  • 39
    • 0002660750 scopus 로고    scopus 로고
    • The support vector method of function estimation
    • Suykeos, J.A.K., Vandewalle, J. (Eds.), Kluwer Academic Publishers, Boston
    • Vapnik, V., 1998b. The support vector method of function estimation. In: Suykeos, J.A.K., Vandewalle, J. (Eds.), Nonlinear Modeling: Advanced Black-Box Techniques. Kluwer Academic Publishers, Boston, pp. 55-85.
    • (1998) Nonlinear Modeling: Advanced Black-Box Techniques , pp. 55-85
    • Vapnik, V.1
  • 40
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Mozer, M., Jordan, M., Petsche, T. (Eds.). MIT Press, Cambridge, MA
    • Vapnik, V., Golowich, S., Smola, A., 1997. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer, M., Jordan, M., Petsche, T. (Eds.). The Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, pp. 281-287.
    • (1997) The Advances in Neural Information Processing Systems , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.