-
1
-
-
0003978311
-
-
Wiley, New York
-
For review, see D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).
-
(1999)
Quantum Dot Heterostructures
-
-
Bimberg, D.1
Grundmann, M.2
Ledentsov, N.N.3
-
2
-
-
0034504908
-
-
See, e.g., E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett. 85, 5647 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5647
-
-
Biolatti, E.1
Iotti, R.C.2
Zanardi, P.3
Rossi, F.4
-
4
-
-
4344567071
-
-
R. Oulton, J.J. Finley, A.D. Ashmore, I.S. Gregory, D.J. Mowbray, M.S. Skolnick, M.J. Steer, S.-L. Liew, M.A. Migliorato, and A.J. Cullis, Phys. Rev. B 66, 045313 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 045313
-
-
Oulton, R.1
Finley, J.J.2
Ashmore, A.D.3
Gregory, I.S.4
Mowbray, D.J.5
Skolnick, M.S.6
Steer, M.J.7
Liew, S.-L.8
Migliorato, M.A.9
Cullis, A.J.10
-
5
-
-
0035821110
-
-
F. Findeis, M. Beier, E. Beham, A. Zrenner, and G. Abstreiter, Appl. Phys. Lett. 78, 2958 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 2958
-
-
Findeis, F.1
Beier, M.2
Beham, E.3
Zrenner, A.4
Abstreiter, G.5
-
6
-
-
0001420731
-
-
P.W. Fry, I.E. Itskevich, D.J. Mowbray, M.S. Skolnick, J.J. Finley, J.A. Barker, E.P. O’Reilly, L.R. Wilson, I.A. Larkin, P.A. Maksym, M. Hopkinson, M. Al-Khafaji, J.P.R. David, A.G. Cullis, G. Hill, and J.C. Clark, Phys. Rev. Lett. 84, 733 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 733
-
-
Fry, P.W.1
Itskevich, I.E.2
Mowbray, D.J.3
Skolnick, M.S.4
Finley, J.J.5
Barker, J.A.6
O’Reilly, E.P.7
Wilson, L.R.8
Larkin, I.A.9
Maksym, P.A.10
Hopkinson, M.11
Al-Khafaji, M.12
David, J.P.R.13
Cullis, A.G.14
Hill, G.15
Clark, J.C.16
-
7
-
-
0344992029
-
-
Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, Phys. Rev. Lett. 82, 4114 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 4114
-
-
Toda, Y.1
Moriwaki, O.2
Nishioka, M.3
Arakawa, Y.4
-
8
-
-
0035099783
-
-
J.J. Finley, A.D. Ashmore, A. Lemaître, D.J. Mowbray, M.S. Skolnick, I. Itskevich, P.A. Maksym, T.K. Krauss, and M. Hopkinson, Phys. Rev. B 63, 073307 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 073307
-
-
Finley, J.J.1
Ashmore, A.D.2
Lemaître, A.3
Mowbray, D.J.4
Skolnick, M.S.5
Itskevich, I.6
Maksym, P.A.7
Krauss, T.K.8
Hopkinson, M.9
-
9
-
-
0034879440
-
-
A. Lemaître, A.D. Ashmore, J.J. Finley, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, and T.F. Krauss, Phys. Rev. B 63, 161309(R) (2002).
-
(2002)
Phys. Rev. B
, vol.63
, pp. 161309
-
-
Lemaître, A.1
Ashmore, A.D.2
Finley, J.J.3
Mowbray, D.J.4
Skolnick, M.S.5
Hopkinson, M.6
Krauss, T.F.7
-
10
-
-
0001668810
-
-
F. Findeis, A. Zrenner, G. Bohm, and G. Abstreiter, Phys. Rev. B 61, R10579 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. R10579
-
-
Findeis, F.1
Zrenner, A.2
Bohm, G.3
Abstreiter, G.4
-
11
-
-
0037101336
-
-
C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, F. Klopf, J.P. Reithmaier, A. Forchel, and J.M. Gerard, Phys. Rev. B 66, 041306(R) (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 041306
-
-
Kammerer, C.1
Voisin, C.2
Cassabois, G.3
Delalande, C.4
Roussignol, P.5
Klopf, F.6
Reithmaier, J.P.7
Forchel, A.8
Gerard, J.M.9
-
12
-
-
0034894966
-
-
The separation of single dot spectra into distinct regions was observed in this work
-
H. Htoon, D. Kulik, O. Baklenov, A.L. Holmes, Jr., T. Takagahara, and C.K. Shih, Phys. Rev. B 63, 241303(R) (2001). The separation of single dot spectra into distinct regions was observed in this work.
-
(2001)
Phys. Rev. B
, vol.63
, pp. 241303
-
-
Htoon, H.1
Kulik, D.2
Baklenov, O.3
Holmes, A.L.4
Takagahara, T.5
Shih, C.K.6
-
13
-
-
0022744182
-
-
Similar transitions for quantum wells have been reported
-
Similar transitions for quantum wells have been reported by M.S. Skolnick, P.R. Tapster, S.J. Bass, A.D. Pitt, N. Apsley, and S.P. Aldred, Semicond. Sci. Technol. 1, 29 (1986).
-
(1986)
Semicond. Sci. Technol.
, vol.1
, pp. 29
-
-
Skolnick, M.S.1
Tapster, P.R.2
Bass, S.J.3
Pitt, A.D.4
Apsley, N.5
Aldred, S.P.6
-
14
-
-
42749107455
-
-
C. Kammerer, G. Cassabois, C. Voisin, C. Delalande, P. Roussignol, and J.M. Gerard, Phys. Rev. Lett. 87, 207401 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 207401
-
-
Kammerer, C.1
Cassabois, G.2
Voisin, C.3
Delalande, C.4
Roussignol, P.5
Gerard, J.M.6
-
15
-
-
17144459927
-
-
P.W. Fry, I.E. Itskevich, S.R. Parnell, J.J. Finley, L.R. Wilson, K.L. Schumacher, D.J. Mowbray, M.S. Skolnick, M. Al-Khafaji, A.G. Cullis, M. Hopkinson, J.C. Clark, and G. Hill, Phys. Rev. B 62, 16 784 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. 16 784
-
-
Fry, P.W.1
Itskevich, I.E.2
Parnell, S.R.3
Finley, J.J.4
Wilson, L.R.5
Schumacher, K.L.6
Mowbray, D.J.7
Skolnick, M.S.8
Al-Khafaji, M.9
Cullis, A.G.10
Hopkinson, M.11
Clark, J.C.12
Hill, G.13
-
17
-
-
85039000652
-
-
Marked increase of linewidth with temperature was observed in PLE in Ref. 11, and was attributed to coupling to continuum states
-
Marked increase of linewidth with temperature was observed in PLE in Ref. 11, and was attributed to coupling to continuum states.
-
-
-
-
18
-
-
0001618607
-
-
A.F. Tsatsulnikov, A.R. Kovsh, A.E. Zhukov, Y.M. Shernyakov, Y.G. Musikhin, V.M. Ustinov, N.A. Bert, P.S. Kop’ev, Zh.I. Alferov, A.M. Mintairov, J.L. Merz, N.N. Ledentsov, and D. Bimberg, J. Appl. Phys. 88, 6272 (2000).
-
(2000)
J. Appl. Phys.
, vol.88
, pp. 6272
-
-
Tsatsulnikov, A.F.1
Kovsh, A.R.2
Zhukov, A.E.3
Shernyakov, Y.M.4
Musikhin, Y.G.5
Ustinov, V.M.6
Bert, N.A.7
Kop’ev, P.S.8
Alferov, Z.I.9
Mintairov, A.M.10
Merz, J.L.11
Ledentsov, N.N.12
Bimberg, D.13
-
19
-
-
0034227979
-
-
Absorption (PLE) spectra with sharp transitions but no continuum have been reported
-
Absorption (PLE) spectra with sharp transitions but no continuum have been reported by P. Hawrylak, G.A. Narvaez, M. Bayer, and A. Forchel, Phys. Rev. Lett. 85, 389 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 389
-
-
Hawrylak, P.1
Narvaez, G.A.2
Bayer, M.3
Forchel, A.4
-
20
-
-
0001337775
-
-
This may arise from the “In-flush-annealing” growth technique, possibly leading to reduction of the amount of In in the WL
-
This may arise from the “In-flush-annealing” growth technique [S. Fafard, Z.R. Wasilewski, C. Ni. Allen, D. Picard, M. Spanner, J.P. McCaffrey, and P.G. Piva, Phys. Rev. B 59, 15 368 (1999)], possibly leading to reduction of the amount of In in the WL.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 15 368
-
-
Fafard, S.1
Wasilewski, Z.R.2
Allen, C.N.3
Picard, D.4
Spanner, M.5
McCaffrey, J.P.6
Piva, P.G.7
-
21
-
-
85039018917
-
-
A broad background signal is seen in PC from 1200 to 1400 meV, probably arising from absorption of scattered laser light by the ensemble of dots. Field modulation techniques (ΔV = 10 mV, 1.6 kHz), sensitive only to field-dependent features, were employed, enabling the background to be eliminated. Lock-in detection leads to the differential spectra of Fig. 22
-
A broad background signal is seen in PC from 1200 to 1400 meV, probably arising from absorption of scattered laser light by the ensemble of dots. Field modulation techniques (ΔV = 10 mV, 1.6 kHz), sensitive only to field-dependent features, were employed, enabling the background to be eliminated. Lock-in detection leads to the differential spectra of Fig. 22.
-
-
-
-
22
-
-
85038999945
-
-
Very similar sharp line structure is seen for dots 2 and 3 (Fig. 33). For dot 3 however, the 15–25 meV features are much weaker relative to the higher-energy lines, supporting a perturbation origin for the observation of the nominally forbidden e1 − h2, e1 − h3 lines. The cylindrical symmetry assumed in the theory accounts for the relatively small number of discrete lines in the theory spectra
-
Very similar sharp line structure is seen for dots 2 and 3 (Fig. 33). For dot 3 however, the 15–25 meV features are much weaker relative to the higher-energy lines, supporting a perturbation origin for the observation of the nominally forbidden e1 − h2, e1 − h3 lines. The cylindrical symmetry assumed in the theory accounts for the relatively small number of discrete lines in the theory spectra.
-
-
-
-
23
-
-
0001558745
-
-
See, e.g., M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11 969 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 11 969
-
-
Grundmann, M.1
Stier, O.2
Bimberg, D.3
-
26
-
-
85038978945
-
-
The polaron splitting for the |e1 − h1, 1LO〉, |e2 − h2〉 resonance is only expected to be ∼0.1 meV due to the similar polarisation charges for electron and hole states of the same symmetry
-
The polaron splitting for the |e1 − h1, 1LO〉, |e2 − h2〉 resonance is only expected to be ∼0.1 meV due to the similar polarisation charges for electron and hole states of the same symmetry.
-
-
-
|