-
4
-
-
4243090463
-
-
R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, and R. Reifenberger, Science 272, 1323 (1996).
-
(1996)
Science
, vol.272
, pp. 1323
-
-
Andres, R.P.1
Bein, T.2
Dorogi, M.3
Feng, S.4
Henderson, J.I.5
Kubiak, C.P.6
Mahoney, W.7
Osifchin, R.G.8
Reifenberger, R.9
-
7
-
-
0035828625
-
-
Appl. Phys. Lett. T. Ohgi, H.-Y. Sheng, Z.-C. Dong, H. Nejoh, and D. Fujita, 79, 2453 (2001);
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 2453
-
-
Ohgi, T.1
Sheng, H.-Y.2
Dong, Z.-C.3
Nejoh, H.4
Fujita, D.5
-
8
-
-
18744396046
-
-
C.A. Berven, M.N. Wybourne, L. Clarke, L. Longstreth, J.E. Hutchinson, and J.L. Mooster, J. Appl. Phys. 92, 4513 (2002);
-
(2002)
J. Appl. Phys.
, vol.92
, pp. 4513
-
-
Berven, C.A.1
Wybourne, M.N.2
Clarke, L.3
Longstreth, L.4
Hutchinson, J.E.5
Mooster, J.L.6
-
9
-
-
0037104180
-
-
K.-H. Müller, J. Herrmann, B. Raguse, G. Baxter, and T. Reda, Phys. Rev. B 66, 075417 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 075417
-
-
Müller, K.-H.1
Herrmann, J.2
Raguse, B.3
Baxter, G.4
Reda, T.5
-
10
-
-
0003973069
-
-
B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam
-
D.V. Averin and K.K. Likharev, in Mesocopic Phenomena in Solids, edited by B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam, 1991);
-
(1991)
Mesocopic Phenomena in Solids
-
-
Averin, D.V.1
Likharev, K.K.2
-
16
-
-
0242679689
-
-
(to be published)
-
Y. Xue and M.A. Ratner, Phys. Rev. B 68, 115406 (2003); (to be published).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 115406
-
-
Xue, Y.1
Ratner, M.A.2
-
23
-
-
0000093324
-
-
M.H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 1824
-
-
Devoret, M.H.1
Esteve, D.2
Grabert, H.3
Ingold, G.-L.4
Pothier, H.5
Urbina, C.6
-
26
-
-
33646652984
-
-
G. Schmid, U. Simon, S. J. Stranick, S. M. Arrivo, and S. Hong, Mater. Res. Soc. Symp. Proc. No. 735 (Material Research Society, Pittsburgh
-
Y. Xue and M.A. Ratner, in Bioinspired Nanoscale Hybrid System, edited by G. Schmid, U. Simon, S. J. Stranick, S. M. Arrivo, and S. Hong, Mater. Res. Soc. Symp. Proc. No. 735 (Material Research Society, Pittsburgh, 2003), p. C5.5.
-
(2003)
Bioinspired Nanoscale Hybrid System
, pp. 55
-
-
Xue, Y.1
Ratner, M.A.2
-
27
-
-
85039000108
-
-
Depending on the molecules chosen, the molecular junction may become sufficiently conducting such that higher-order effects including quantum fluctuation of charges on the nanoparticle and cotunneling effects become important. The microscopic theory presented here provides a systematic way of investigating such effects following the procedures described in Refs. 11 and 12. But for single-electron device applications, molecular junction with high resistance is desirable and the lowest-order perturbation theory is sufficient. The choice of the molecules studied here reflects this consideration
-
Depending on the molecules chosen, the molecular junction may become sufficiently conducting such that higher-order effects including quantum fluctuation of charges on the nanoparticle and cotunneling effects become important. The microscopic theory presented here provides a systematic way of investigating such effects following the procedures described in Refs. 11 and 12. But for single-electron device applications, molecular junction with high resistance is desirable and the lowest-order perturbation theory is sufficient. The choice of the molecules studied here reflects this consideration.
-
-
-
-
28
-
-
85038978649
-
-
Since the metal-molecule interaction is a local phenomenon, we neglect the curvature of the nanoparticle surface and calculate the electronic structure of metal-molecule-nanoparticle junction in the same way as that of the metal-molecule-metal junction in Refs. 7 and 8
-
Since the metal-molecule interaction is a local phenomenon, we neglect the curvature of the nanoparticle surface and calculate the electronic structure of metal-molecule-nanoparticle junction in the same way as that of the metal-molecule-metal junction in Refs. 7 and 8.
-
-
-
-
29
-
-
85038984275
-
-
x is obtained by integrating the (self-consistent) electron-density distribution over the region occupied by the perturbed surface atoms of the nanoparticle
-
x is obtained by integrating the (self-consistent) electron-density distribution over the region occupied by the perturbed surface atoms of the nanoparticle.
-
-
-
-
30
-
-
0000787592
-
-
M. Amman, R. Wilkins, E. Ben-Jacob, P.D. Maker, and R.C. Jaklevic, Phys. Rev. B 43, 1146 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1146
-
-
Amman, M.1
Wilkins, R.2
Ben-Jacob, E.3
Maker, P.D.4
Jaklevic, R.C.5
|