메뉴 건너뛰기




Volumn 63, Issue 2, 2003, Pages 115-124

Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation

Author keywords

local conservation laws; multisymplectic formulation; multisymplectic integrator; Zakharov Kuznetsov equation

Indexed keywords


EID: 0742333387     PISSN: 03779017     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1023067332646     Document Type: Article
Times cited : (20)

References (16)
  • 1
    • 0001046947 scopus 로고
    • Extension of the classical Cartan form
    • Betounes, D. E.: Extension of the classical Cartan form, Phys. Rev. D 29 (1984), 599-606.
    • (1984) Phys. Rev. D , vol.29 , pp. 599-606
    • Betounes, D.E.1
  • 2
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • Bridges, T. J.: Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc. 121 (1997), 147-190.
    • (1997) Math. Proc. Cambridge Philos. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 3
    • 0030695841 scopus 로고    scopus 로고
    • A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities
    • Bridges, T. J.: A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities, Proc. Royal. Soc. London A 453 (1997), 1365-1395.
    • (1997) Proc. Royal. Soc. London A , vol.453 , pp. 1365-1395
    • Bridges, T.J.1
  • 4
    • 0004500194 scopus 로고    scopus 로고
    • Universal geometric condition for the transverse instability of solitary waves
    • Bridges, T. J.: Universal geometric condition for the transverse instability of solitary waves, Phys. Rev. Lett. 84 (2000), 2614-2617.
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 2614-2617
    • Bridges, T.J.1
  • 5
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • Bridges, T. J. and Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), 184-193.
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 6
    • 0039152065 scopus 로고    scopus 로고
    • Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations
    • Bridges, T. J. and Reich, S.: Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations, Physica D 152 (2001), 491-504.
    • (2001) Physica D , vol.152 , pp. 491-504
    • Bridges, T.J.1    Reich, S.2
  • 7
    • 0042315367 scopus 로고    scopus 로고
    • Total variation in discrete multisymplectic field theory and multisymplectic-energy-momentum integrators
    • Chen, J. B.: Total variation in discrete multisymplectic field theory and multisymplectic-energy-momentum integrators, Lett. Math. Phys. 61 (2002), 63-73.
    • (2002) Lett. Math. Phys. , vol.61 , pp. 63-73
    • Chen, J.B.1
  • 8
    • 0034289247 scopus 로고    scopus 로고
    • Dynamics of waves and multidimensional solitons of the Zakharov-Kuznetsov equation
    • Infeld, E., Skorupski, A. A. and Senatorski, A.: Dynamics of waves and multidimensional solitons of the Zakharov-Kuznetsov equation, J. Plasma Phys. 64 (2000), 397-409.
    • (2000) J. Plasma Phys. , vol.64 , pp. 397-409
    • Infeld, E.1    Skorupski, A.A.2    Senatorski, A.3
  • 9
    • 0001137079 scopus 로고
    • Cylindrical qusi-solitons to the Zakharov-Kuznetsov equation
    • Iwasaki, S., Toh, and Kawahara, T.: Cylindrical qusi-solitons to the Zakharov-Kuznetsov equation, Physica D 43 (1990), 293-303.
    • (1990) Physica D , vol.43 , pp. 293-303
    • Iwasaki, S.1    Toh2    Kawahara, T.3
  • 11
    • 0036320849 scopus 로고    scopus 로고
    • Hamiltonian field theory
    • Krupkova, O.: Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93-132.
    • (2002) J. Geom. Phys. , vol.43 , pp. 93-132
    • Krupkova, O.1
  • 12
    • 0032476963 scopus 로고    scopus 로고
    • Multisymplectic geometry, variational integrators, and nonlinear PDEs
    • Marsden, J. E., Patrick, G. W. and Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys. 199 (1998), 351-395.
    • (1998) Comm. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.W.2    Shkoller, S.3
  • 14
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys. 157 (2000), 473-499.
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 16
    • 0034640067 scopus 로고    scopus 로고
    • Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation
    • Zhao, P. F. and Qin, M. Z.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation, J. Phys. A: Math, Gen. 33 (2000), 3613-3626.
    • (2000) J. Phys. A: Math, Gen. , vol.33 , pp. 3613-3626
    • Zhao, P.F.1    Qin, M.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.