-
1
-
-
0000652102
-
Some solutions to the missing feature problem in vision
-
S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
-
Ahmad, S., & Tresp, V. (1993). Some solutions to the missing feature problem in vision. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Neural information processing systems, 5 (pp. 393-440). San Mateo, CA: Morgan Kaufmann.
-
(1993)
Neural Information Processing Systems
, vol.5
, pp. 393-440
-
-
Ahmad, S.1
Tresp, V.2
-
7
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng., 8, 35-45.
-
(1960)
Trans. ASME J. Basic Eng.
, vol.8
, pp. 35-45
-
-
Kalman, R.E.1
-
8
-
-
0026267887
-
Nonlinear adaptive filtering in nonstationary environments
-
Kadirkamanathan, V., & Niranjan, M. (1991). Nonlinear adaptive filtering in nonstationary environments. ICASSP 91.
-
(1991)
ICASSP 91
-
-
Kadirkamanathan, V.1
Niranjan, M.2
-
11
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
Department of Computer Science, University of Toronto
-
Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Tech. Rep. No. CRG-TR-93-1). Department of Computer Science, University of Toronto.
-
(1993)
Tech. Rep. No. CRG-TR-93-1
-
-
Neal, R.M.1
-
12
-
-
0002245041
-
Estimation of conditional densities: A comparison of neural network approaches
-
Sorrento
-
Neuneier, R., Hergert, F., Finnoff, W., & Ormoneit, D. (1994). Estimation of conditional densities: A comparison of neural network approaches (pp. 689-692). Proc. of ICANN 94, Sorrento.
-
(1994)
Proc. of ICANN 94
, pp. 689-692
-
-
Neuneier, R.1
Hergert, F.2
Finnoff, W.3
Ormoneit, D.4
-
14
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
-
Puskorius, G. V., & Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2), 279-297.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 279-297
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
15
-
-
84986753417
-
An approach to time series smoothing and forecasting using the EM algorithm
-
Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3, 253-264.
-
(1982)
Journal of Time Series Analysis
, vol.3
, pp. 253-264
-
-
Shumway, R.H.1
Stoffer, D.S.2
-
16
-
-
0000221272
-
Training multi-layer perceptrons with the extended Kalman algorithm
-
D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufman
-
Singhal, S., & Wu, L. (1989). Training multi-layer perceptrons with the extended Kalman algorithm. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 1 (pp. 133-140). San Mateo, CA: Morgan Kaufman.
-
(1989)
Advances in Neural Information Processing Systems
, vol.1
, pp. 133-140
-
-
Singhal, S.1
Wu, L.2
-
17
-
-
0029225970
-
Missing and noisy data in nonlinear time-series prediction
-
F. Girosi, J. Makhoul, E. Manolakos, & E. Wilson (Eds.), New York: IEEE
-
Tresp, V., & Hofmann, R. (1995). Missing and noisy data in nonlinear time-series prediction. In F. Girosi, J. Makhoul, E. Manolakos, & E. Wilson (Eds.), Neural networks for signal processing 5 (pp. 1-10). New York: IEEE.
-
(1995)
Neural Networks for Signal Processing
, vol.5
, pp. 1-10
-
-
Tresp, V.1
Hofmann, R.2
|