-
1
-
-
0344361923
-
-
Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. See also: Norman, Sir R.; Coxon, J. M. Principles of Organic Synthesis Blackie Chapman and Hall: London, and John Wiley and Sons: New York, 1993; p 678.
-
(1976)
J. Chem. Soc., Chem. Commun.
, pp. 734
-
-
Baldwin, J.E.1
-
2
-
-
0004237533
-
-
Blackie Chapman and Hall: London, and John Wiley and Sons: New York
-
Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. See also: Norman, Sir R.; Coxon, J. M. Principles of Organic Synthesis Blackie Chapman and Hall: London, and John Wiley and Sons: New York, 1993; p 678.
-
(1993)
Principles of Organic Synthesis
, pp. 678
-
-
Norman, R.1
Coxon, J.M.2
-
3
-
-
0000592263
-
-
Coxon, J. M.; Hartshorn, M. P.; Swallow, W. H. Aust. J. Chem. 1973, 26, 2521
-
(1973)
Aust. J. Chem.
, vol.26
, pp. 2521
-
-
Coxon, J.M.1
Hartshorn, M.P.2
Swallow, W.H.3
-
4
-
-
0027922048
-
-
Janda, K. D.; Shevlin, C. G.; Lerner, R. A. Science 1993, 259, 490.
-
(1993)
Science
, vol.259
, pp. 490
-
-
Janda, K.D.1
Shevlin, C.G.2
Lerner, R.A.3
-
5
-
-
0000778698
-
-
Na, Houk, J.; Shevlin, K. N.; C. G.; Janda, Lerner, K. D.; R. A. J. Am. Chem. Soc. 1993, 115, 8453.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 8453
-
-
Na Houk, J.1
Shevlin, K.N.2
Grawat, C.3
Janda Lerner, K.D.4
Arawat, R.5
-
7
-
-
33751154573
-
-
Methods defined herein: Coxon, J. M.; Houk, K. N.; Luibrand, R. T. J. Org. Chem. 1995, 60, 418-427.
-
(1995)
J. Org. Chem.
, vol.60
, pp. 418-427
-
-
Coxon, J.M.1
Houk, K.N.2
Luibrand, R.T.3
-
8
-
-
0842341771
-
-
AM1: Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 3902
-
-
Dewar, M.J.S.1
Zoebisch, E.G.2
Healy, E.F.3
Stewart, J.J.P.4
-
11
-
-
0345491105
-
-
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
12
-
-
1542426862
-
-
Cf. Schreiner, P. R.; Schleyer, P. v. R.; Schaefer, H. F. J. Org. Chem. 1997, 62, 4216.
-
(1997)
J. Org. Chem.
, vol.62
, pp. 4216
-
-
Schreiner, P.R.1
Schleyer, P.V.R.2
Schaefer, H.F.3
-
13
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA
-
Gaussian 94, Revision B.1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.;. Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J.; P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.
-
(1995)
Gaussian 94, Revision B.1
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Cioslowski, J.16
Stefanov, B.B.17
Nanayakkara, A.18
Challacombe, M.19
Peng, C.Y.20
Ayala, P.Y.21
Chen, W.22
Wong, M.W.23
Andres, J.L.24
Replogle, E.S.25
Gomperts, R.26
Martin, R.L.27
Fox, D.J.28
Binkley, J.S.29
Defrees, D.J.30
Baker, J.31
Stewart, J.P.32
Head-Gordon, M.33
Gonzalez, C.34
Pople, J.A.35
more..
-
15
-
-
0030951078
-
-
Coxon, J. M.; Maclagan, R. G. A. R.; Rauk, A.; Thorpe, A. J.; Whalen, D. J. Am. Chem. Soc. 1997, 119, 4712-4718.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 4712-4718
-
-
Coxon, J.M.1
Maclagan, R.G.A.R.2
Rauk, A.3
Thorpe, A.J.4
Whalen, D.5
-
16
-
-
1542678761
-
-
note
-
See the Supporting Information for the method of generation of the structure.
-
-
-
-
17
-
-
85087582474
-
-
note
-
12 Therefore, these two protonated diastereomers are likely to be in equilibrium via reversible protonation/deprotonation, and 17 is the most abundant protonated form of the cis-epoxide.
-
-
-
-
18
-
-
1542784070
-
-
note
-
The lowest energy conformer 14 with the ether proton syn to the hydroxyl was 5.4 kcal/mol lower in energy than the lowest energy structure protonated anti to the hydroxyl and has a hydrogen bond between O4 and H8 (2.232 Å at MP2/6-31G*). The O1-H8 bond (0.992 Å) is somewhat longer than it would be in the absence of this H-bonding.
-
-
-
-
19
-
-
1542784071
-
-
note
-
TS 13-14 was calculated to be lower in energy by 1.0 kcal/mol (HF/6-31G* + ZPC) than when the proton was positioned syn to the epoxide substituent groups; therefore, the IRC was conducted from the anti-protonated structure (TS 13-14) even though 17 (Figure 6) is lower than 13.
-
-
-
-
20
-
-
1542469258
-
-
note
-
Another transition structure involving retention of configuration for the conversion of 13 to 18 was found at the HF/3-21G* level with a high barrier of 14.3 kcal/mol (HF/3-21G* + ZPC). However, this structure does not exist at higher levels of theory.
-
-
-
-
21
-
-
0002735664
-
-
Fukui, K.; Kato, S.; Fujimoto, H. J. Am. Chem. Soc. 1975, 97, 1. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.
-
(1975)
J. Am. Chem. Soc.
, vol.97
, pp. 1
-
-
Fukui, K.1
Kato, S.2
Fujimoto, H.3
-
22
-
-
36749113125
-
-
Fukui, K.; Kato, S.; Fujimoto, H. J. Am. Chem. Soc. 1975, 97, 1. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153.
-
(1977)
J. Chem. Phys.
, vol.66
, pp. 2153
-
-
Ishida, K.1
Morokuma, K.2
Komornicki, A.3
-
23
-
-
1542678762
-
-
note
-
A movie file has been deposited with the Supporting Information.
-
-
-
-
24
-
-
1542678764
-
-
note
-
A detailed analysis of the changes in bond lengths and angles in this process is included in the Supporting Information.
-
-
-
-
25
-
-
1542784076
-
-
note
-
A detailed analysis of the IRC is given in the Supporting Information.
-
-
-
|