-
1
-
-
0003663615
-
-
Academic Press, San Diego, CA
-
M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).
-
(1996)
Science of Fullerenes and Carbon Nanotubes
-
-
Dresselhaus, M.S.1
Dresselhaus, G.2
Eklund, P.C.3
-
2
-
-
0030892702
-
-
M. Bockrath et al., Science 275, 1922 (1997).
-
(1997)
Science
, vol.275
, pp. 1922
-
-
Bockrath, M.1
-
3
-
-
0007178040
-
-
S. J. Tans et al., Nature 386, 474 (1997).
-
(1997)
Nature
, vol.386
, pp. 474
-
-
Tans, S.J.1
-
4
-
-
0039809542
-
-
M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); Nature 363, 424 (1993); Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
-
(1993)
Science
, vol.262
, pp. 218
-
-
Crommie, M.F.1
Lutz, C.P.2
Eigler, D.M.3
-
5
-
-
0038503501
-
-
M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); Nature 363, 424 (1993); Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
-
(1993)
Nature
, vol.363
, pp. 424
-
-
-
6
-
-
0038774553
-
-
M. F. Crommie, C. P. Lutz, D. M. Eigler, Science 262, 218 (1993); Nature 363, 424 (1993); Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 1071
-
-
Hasegawa, Y.1
Avouris, Ph.2
-
7
-
-
2642660458
-
-
J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 391, 59 (1998).
-
(1998)
Nature
, vol.391
, pp. 59
-
-
Wildöer, J.W.G.1
Venema, L.C.2
Rinzler, A.G.3
Smalley, R.E.4
Dekker, C.5
-
8
-
-
0031912473
-
-
T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, ibid., p. 62.
-
Nature
, pp. 62
-
-
Odom, T.W.1
Huang, J.-L.2
Kim, P.3
Lieber, C.M.4
-
9
-
-
0347911826
-
-
J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992); N. Hamada, S.-I. Sawada, A. Oshiyama, ibid., p. 1579; R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 631
-
-
Mintmire, J.W.1
Dunlap, B.I.2
White, C.T.3
-
10
-
-
11744334526
-
-
J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992); N. Hamada, S.-I. Sawada, A. Oshiyama, ibid., p. 1579; R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
-
Phys. Rev. Lett.
, pp. 1579
-
-
Hamada, N.1
Sawada, S.-I.2
Oshiyama, A.3
-
11
-
-
33744603046
-
-
J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992); N. Hamada, S.-I. Sawada, A. Oshiyama, ibid., p. 1579; R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 2204
-
-
Saito, R.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
12
-
-
6444244907
-
-
A. Thess et al., Science 273, 483 (1996).
-
(1996)
Science
, vol.273
, pp. 483
-
-
Thess, A.1
-
13
-
-
0344212065
-
-
note
-
Exact identification of the lattice indices (n,m) [see (1)] of chiral nanotubes is quite difficult because both the nanotube diameter and the chiral angle between hexagon rows and the tube axis must be measured with high accuracy. The (n,m) indices are crucial for chiral tubes because a minor change in one of these determines whether the tube is a metal or a semi-conductor. For armchair tubes, however, the situation is easier. The nonchiral structure with hexagon rows running parallel to the tube axis can be easily observed from the atomically resolved images, and a precise determination of the diameter is not essential because armchair tubes of all diameters are metallic.
-
-
-
-
15
-
-
0031551609
-
-
L. C. Venema et al., Appl. Phys. Lett. 71, 2629 (1997). After this cutting event, the tip was cleaned by applying voltage pulses above the gold substrate, far away from the tube. Linear I-V spectroscopy curves on clean areas of the gold substrate demonstrated that the tip was free of debris.
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 2629
-
-
Venema, L.C.1
-
16
-
-
0344212064
-
-
note
-
The applied voltage is in principle divided into a part that drops over the tunnel gap and a part that drops between the nanotube and the substrate. The ratio α between these voltages is determined by the capacitance ratio. Because the capacitance between nanotube and substrate is much larger than that between the nanotube and the STM tip, the voltage will drop almost entirely over the tunnel gap, and accordingly α has a value close to 1.
-
-
-
-
18
-
-
0003372328
-
-
L. L. Sohn, G. Schön, L. P. Kouwenhoven, Eds. Kluwer, Dordrecht, Netherlands
-
L. P. Kouwenhoven et al., in Mesoscopic Electron Transport, L. L. Sohn, G. Schön, L. P. Kouwenhoven, Eds. (Kluwer, Dordrecht, Netherlands, 1997), pp. 105-214.
-
(1997)
Mesoscopic Electron Transport
, pp. 105-214
-
-
Kouwenhoven, L.P.1
-
19
-
-
34548615985
-
-
Note that the exact voltages at which the peaks in dI/dV appear in Figs. 2 and 3A are different. This can be attributed to variations in the offset charge caused by trapping of charge in the environment of the tube, as is well known in Coulomb charging phenomena [see R. Wilkins and R. C. Jaclevic, Phys. Rev. Lett. 63, 801 (1989); J. G. A. Dubois, E. N. G. Verheijen, J. W. Gerritsen, H. Van Kempen, Phys. Rev. B 48, 11260 (1993)]. Variation of the offset charge may change the Coulomb gap and thus shift the exact voltage at which the discrete levels of the tube appear in the I-V measurements. In fact, switching of offset charges was observed in some of our line scans. This effect is irrelevant for the observations reported here, which are the periodic oscillations in the differential conductance of discrete energy levels.
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 801
-
-
Wilkins, R.1
Jaclevic, R.C.2
-
20
-
-
0000983606
-
-
Note that the exact voltages at which the peaks in dI/dV appear in Figs. 2 and 3A are different. This can be attributed to variations in the offset charge caused by trapping of charge in the environment of the tube, as is well known in Coulomb charging phenomena [see R. Wilkins and R. C. Jaclevic, Phys. Rev. Lett. 63, 801 (1989); J. G. A. Dubois, E. N. G. Verheijen, J. W. Gerritsen, H. Van Kempen, Phys. Rev. B 48, 11260 (1993)]. Variation of the offset charge may change the Coulomb gap and thus shift the exact voltage at which the discrete levels of the tube appear in the I-V measurements. In fact, switching of offset charges was observed in some of our line scans. This effect is irrelevant for the observations reported here, which are the periodic oscillations in the differential conductance of discrete energy levels.
-
(1993)
Phys. Rev. B
, vol.48
, pp. 11260
-
-
Dubois, J.G.A.1
Verheijen, E.N.G.2
Gerritsen, J.W.3
Van Kempen, H.4
-
21
-
-
0344212062
-
-
note
-
The total wave function is in fact defined by the atomic lattice potential modulated with a standing wave profile resulting from the confinement in the length direction. Because the STM tip follows the atomic corrugation by scanning in constant-current mode at a high bias voltage, the lattice periodicity is largely compensated so that the standing waves can be resolved in the spectroscopy measurements for several discrete states at low bias.
-
-
-
-
22
-
-
0345505859
-
-
A. Rubio, E. Artacho, P. Ordejon, P. D. Sanchez-Portal, D. J. Soler, in preparation
-
A. Rubio, E. Artacho, P. Ordejon, P. D. Sanchez-Portal, D. J. Soler, in preparation.
-
-
-
-
23
-
-
0344212056
-
-
note
-
We thank R. E. Smalley and co-workers for supplying the nanotube material and A. Rubio for sharing results before publication. Supported in part by the Dutch Foundation for Fundamental Research of Matter (FOM). L.P.K. is supported by the Royal Dutch Acadamy of Sciences and Art (KNAW).
-
-
-
|