-
1
-
-
0003823901
-
-
(Ed.: H. D. Gilbert), Reinhold, New York
-
a) R. P. Feynman in Miniaturization (Ed.: H. D. Gilbert), Reinhold, New York, 1961, p. 282;
-
(1961)
Miniaturization
, pp. 282
-
-
Feynman, R.P.1
-
4
-
-
0000633029
-
-
d) D. Philp, J. F. Stoddart, Angew. Chem. 1996, 108, 1242; Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
-
(1996)
Angew. Chem.
, vol.108
, pp. 1242
-
-
Philp, D.1
Stoddart, J.F.2
-
5
-
-
0029811409
-
-
d) D. Philp, J. F. Stoddart, Angew. Chem. 1996, 108, 1242; Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
-
(1996)
Angew. Chem. Int. Ed. Engl.
, vol.35
, pp. 1154
-
-
-
8
-
-
0000494617
-
-
C. M. Niemeyer, Angew. Chemie 1997, 109, 603; Angew. Chem. Int. Ed. Engl. 1997, 36, 585.
-
(1997)
Angew. Chemie
, vol.109
, pp. 603
-
-
Niemeyer, C.M.1
-
9
-
-
0030899627
-
-
C. M. Niemeyer, Angew. Chemie 1997, 109, 603; Angew. Chem. Int. Ed. Engl. 1997, 36, 585.
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.36
, pp. 585
-
-
-
11
-
-
0028566558
-
-
C. M. Niemeyer, T. Sano, C. L. Smith, C. R. Cantor, Nucl. Acids Res. 1994, 22, 5530.
-
(1994)
Nucl. Acids Res.
, vol.22
, pp. 5530
-
-
Niemeyer, C.M.1
Sano, T.2
Smith, C.L.3
Cantor, C.R.4
-
12
-
-
0029781508
-
-
C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607.
-
(1996)
Nature
, vol.382
, pp. 607
-
-
Mirkin, C.A.1
Letsinger, R.L.2
Mucic, R.C.3
Storhoff, J.J.4
-
13
-
-
0029781455
-
-
A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C J. Loweth, M. P. Bruchez Jr., P. G. Schultz, Nature 1996, 382, 609.
-
(1996)
Nature
, vol.382
, pp. 609
-
-
Alivisatos, A.P.1
Johnsson, K.P.2
Peng, X.3
Wilson, T.E.4
Loweth, C.J.5
Bruchez M.P., Jr.6
Schultz, P.G.7
-
14
-
-
0030768397
-
-
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078.
-
(1997)
Science
, vol.277
, pp. 1078
-
-
Elghanian, R.1
Storhoff, J.J.2
Mucic, R.C.3
Letsinger, R.L.4
Mirkin, C.A.5
-
15
-
-
0345368073
-
-
A comparative study of the hybridization kinetics of 1a-f and 3a-f revealed dramatic differences in affinity of sequences a-f: The hybridization efficiency at room temperature decreases in the order a>b, f>c, d>e and correlates with the structural properties of the oligonucleotides. The coupling with STV results in minor changes of the sequence-specific binding properties: The rates of association and dissociation of 3a-f are up to five times slower than those of 1a-f. C. M. Niemeyer, W. Bürger, R. J. M. Hoedemakers, Bioconjugate Chem. 1998, 9, 168.
-
(1998)
Bioconjugate Chem.
, vol.9
, pp. 168
-
-
Niemeyer, C.M.1
Bürger, W.2
Hoedemakers, R.J.M.3
-
17
-
-
0027968073
-
-
This effect was previously observed, for example, for the binding of 12-mer oligonucleotides to an RNA molecule: G. Godard, J.-C. Francois, I. Duroux, U. Asseline, M. Chassignol, N. Thuong, C. Helene, T. Saison-Behmoaras, Nucleic Acids Res. 1994, 22, 4789.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 4789
-
-
Godard, G.1
Francois, J.-C.2
Duroux, I.3
Asseline, U.4
Chassignol, M.5
Thuong, N.6
Helene, C.7
Saison-Behmoaras, T.8
-
18
-
-
0039456274
-
-
1[10]). Thus, thermodynamic stability of binary aggregates 5 is, depending on the sequences, influenced to a varying extent by the presence of helper oligonucleotides. Experiments in which the aggregation temperature and time were varied suggest that the system reaches thermodynamic equilibrium under the conditions described. Therefore, the influence of helper oligonucleotides depends on the base sequence and the number of DNA-STV hybrids. While the formation of binary aggregates is increased by a factor of up to 20 (e.g., for 5[d], 5[e]), depending on the sequence, a comparison of ternary aggregates reveals an increase in signal intensity by a factor of up to three, depending on the building blocks applied. The rates of increase are consistent with the calculated secondary structure of 4, and this indicates that the sequence section d′-e′-f′, in particular, is engaged in a stable double-helical domain. Aggregates consisting of four or more protein components are scarcely influenced by helper oligonucleotides.
-
(1997)
J. Biol. Chem.
, vol.11
, pp. 288
-
-
González, M.1
Bagatolli, L.2
Echabe, I.3
Arrondo, J.4
Argaraña, C.5
Cantor, C.R.6
Fidelio, G.7
-
19
-
-
0024588901
-
-
The dimensions of the protein are approximately 4 x 4.2 x 5.6 nm, and the four biotin-binding sites inside the molecule form a distorted tetrahedron with edge lengths of about 2.3 nm on average: P.C. Weber, D.H. Ohlendorf, J. J. Wendoloski, F. R. Salemme, Science 1989, 243, 85. After labeling of avidin with similar 1-nm gold clusters, a distance between the biotin binding sites of about 2 nm was determined: D. E. Safer, J. Hainfeld, J. S. Wall, J. E. Reardon, Science 1982, 218, 290.
-
(1989)
Science
, vol.243
, pp. 85
-
-
Weber, P.C.1
Ohlendorf, D.H.2
Wendoloski, J.J.3
Salemme, F.R.4
-
20
-
-
0019968350
-
-
The dimensions of the protein are approximately 4 x 4.2 x 5.6 nm, and the four biotin-binding sites inside the molecule form a distorted tetrahedron with edge lengths of about 2.3 nm on average: P.C. Weber, D.H. Ohlendorf, J. J. Wendoloski, F. R. Salemme, Science 1989, 243, 85. After labeling of avidin with similar 1-nm gold clusters, a distance between the biotin binding sites of about 2 nm was determined: D. E. Safer, J. Hainfeld, J. S. Wall, J. E. Reardon, Science 1982, 218, 290.
-
(1982)
Science
, vol.218
, pp. 290
-
-
Safer, D.E.1
Hainfeld, J.2
Wall, J.S.3
Reardon, J.E.4
|