-
1
-
-
0028596415
-
-
S. Razin, Mol. Cell. Probes 8, 497 (1994); J. G. Hacia et al., Nature Genet. 14, 441 (1996).
-
(1994)
Mol. Cell. Probes
, vol.8
, pp. 497
-
-
Razin, S.1
-
2
-
-
0029829670
-
-
S. Razin, Mol. Cell. Probes 8, 497 (1994); J. G. Hacia et al., Nature Genet. 14, 441 (1996).
-
(1996)
Nature Genet.
, vol.14
, pp. 441
-
-
Hacia, J.G.1
-
3
-
-
0029006782
-
-
E. S. Mansfield et al., Mol. Cell. Probes 9, 145 (1995); L. J. Kricka, Ed., Nonisotopic DNA Probe Techniques (Academic Press, San Diego, 1992).
-
(1995)
Mol. Cell. Probes
, vol.9
, pp. 145
-
-
Mansfield, E.S.1
-
4
-
-
0029006782
-
-
Academic Press, San Diego
-
E. S. Mansfield et al., Mol. Cell. Probes 9, 145 (1995); L. J. Kricka, Ed., Nonisotopic DNA Probe Techniques (Academic Press, San Diego, 1992).
-
(1992)
Nonisotopic DNA Probe Techniques
-
-
Kricka, L.J.1
-
8
-
-
4243308931
-
-
U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985); B. Dusemund et al., Z. Phys. D 20, 305 (1991).
-
(1985)
Surf. Sci.
, vol.156
, pp. 678
-
-
Kreibig, U.1
Genzel, L.2
-
9
-
-
0002439319
-
-
U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985); B. Dusemund et al., Z. Phys. D 20, 305 (1991).
-
(1991)
Z. Phys. D
, vol.20
, pp. 305
-
-
Dusemund, B.1
-
10
-
-
0029377984
-
-
M. Brust et al., Adv. Mater. 7, 795 (1995); K. C. Grabar et al., J. Am. Chem. Soc. 118, 1148 (1996); J. J. Storhoff, R. C. Mucic, C. A. Mirkin, J. Cluster Sci., 8, 179 (1997).
-
(1995)
Adv. Mater.
, vol.7
, pp. 795
-
-
Brust, M.1
-
11
-
-
0029916618
-
-
M. Brust et al., Adv. Mater. 7, 795 (1995); K. C. Grabar et al., J. Am. Chem. Soc. 118, 1148 (1996); J. J. Storhoff, R. C. Mucic, C. A. Mirkin, J. Cluster Sci., 8, 179 (1997).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 1148
-
-
Grabar, K.C.1
-
12
-
-
0031496688
-
-
M. Brust et al., Adv. Mater. 7, 795 (1995); K. C. Grabar et al., J. Am. Chem. Soc. 118, 1148 (1996); J. J. Storhoff, R. C. Mucic, C. A. Mirkin, J. Cluster Sci., 8, 179 (1997).
-
(1997)
J. Cluster Sci.
, vol.8
, pp. 179
-
-
Storhoff, J.J.1
Mucic, R.C.2
Mirkin, C.A.3
-
14
-
-
11944264183
-
-
K. C. Grabar et al., Anal. Chem. 67, 735 (1995); G. Frens, Nature Phys. Sci. 241, 20 (1973).
-
(1995)
Anal. Chem.
, vol.67
, pp. 735
-
-
Grabar, K.C.1
-
15
-
-
11944264183
-
-
K. C. Grabar et al., Anal. Chem. 67, 735 (1995); G. Frens, Nature Phys. Sci. 241, 20 (1973).
-
(1973)
Nature Phys. Sci.
, vol.241
, pp. 20
-
-
Frens, G.1
-
16
-
-
0029781508
-
-
C. A. Mirkin et al., Nature 382, 607 (1996).
-
(1996)
Nature
, vol.382
, pp. 607
-
-
Mirkin, C.A.1
-
17
-
-
0000483775
-
-
Multiple loading of the oligonucleotides is necessary for subsequent cross-linking in our system. The surface chemistry involved in linking alkylthiols to Au surfaces is still a subject of debate [see C. S. Weisbecker et al., Langmuir 12, 3763 (1996)]. An alternative method of binding oligonucleotides covalently to Au particles, which was developed for a different purpose, was reported to give ∼1-nm nanoparticles containing a single oligomer on a particle [A. P. Alivisatos et al., Nature 382 609 (1996)].
-
(1996)
Langmuir
, vol.12
, pp. 3763
-
-
Weisbecker, C.S.1
-
18
-
-
0029781455
-
-
Multiple loading of the oligonucleotides is necessary for subsequent cross-linking in our system. The surface chemistry involved in linking alkylthiols to Au surfaces is still a subject of debate [see C. S. Weisbecker et al., Langmuir 12, 3763 (1996)]. An alternative method of binding oligonucleotides covalently to Au particles, which was developed for a different purpose, was reported to give ∼1-nm nanoparticles containing a single oligomer on a particle [A. P. Alivisatos et al., Nature 382 609 (1996)].
-
(1996)
Nature
, vol.382
, pp. 609
-
-
Alivisatos, A.P.1
-
19
-
-
1842379407
-
-
note
-
Subsequent experiments have shown that the oligonucleotide spacer is not essential.
-
-
-
-
20
-
-
1842279373
-
-
note
-
The concentrations for the three components were the same as those described in the caption for Fig. 3A.
-
-
-
-
21
-
-
0001697505
-
-
For another example in which the rate of a reaction dependent on the hybridization of oligonucleotides was accelerated by the freezing of an aqueous solution of the components, see S. M. Gryaznov and R. L. Letsinger, J. Am. Chem. Soc. 115, 3808 (1993).
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 3808
-
-
Gryaznov, S.M.1
Letsinger, R.L.2
-
22
-
-
1842402039
-
-
note
-
m for the nanoparticle system hybridized by the freeze-thaw method agreed (±0.2°C) with that for the nanoparticle system hybridized at room temperature (24 hours).
-
-
-
-
23
-
-
1842268638
-
-
note
-
Transmission electron microscopy pictures of typical aggregates are available in supplementary material. Similar images can be found in (70).
-
-
-
-
24
-
-
1842400778
-
-
note
-
For this experiment, 1 μl of solution containing 10 fmol of target oligonucleotide and 1 μl of solution containing both nanoparticle probes in a buffer (0.3
-
-
-
-
25
-
-
0024283307
-
-
18 TLC plate. A blue spot developed. In the absence of target, the color remained pink. For comparison, the lower limit for detecting an oligonucleotide with the use of a probe labeled with fluorescein in a sandwich hybridization system was reported to be 500 fmol [M. S. Urdea et al., Nucleic Acids Res. 16, 4937 (1988)].
-
(1988)
Nucleic Acids Res.
, vol.16
, pp. 4937
-
-
Urdea, M.S.1
-
26
-
-
1842308136
-
-
note
-
We acknowledge support by grants from the National Institute of General Medical Sciences (GM 10265) and the Office of Naval Research (N0014-94-1-0703 and N00014-97-10430) and the Department of Defense (MURI DAAG 55-97-1-0133).
-
-
-
|