메뉴 건너뛰기




Volumn 17, Issue 4, 2003, Pages 361-373

Neural networks in production scheduling: intelligent solutions and future promises

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DECISION MAKING; ENTERPRISE RESOURCE PLANNING; MARKETING; PLANNING; SCHEDULING; TECHNOLOGICAL FORECASTING;

EID: 0242582947     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/713827140     Document Type: Article
Times cited : (10)

References (95)
  • 2
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R., J. Deiderich, and A. Tickle. 1995. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based Systems 8:373-383.
    • (1995) Knowledge-Based Systems , vol.8 , pp. 373-383
    • Andrews, R.1    Deiderich, J.2    Tickle, A.3
  • 3
    • 0026126118 scopus 로고
    • A computational study of the job-shop scheduling problem
    • Applegate, D., and W. Cook. 1991. A computational study of the job-shop scheduling problem. ORSA Journal of Computing 3:149-156.
    • (1991) ORSA Journal of Computing , vol.3 , pp. 149-156
    • Applegate, D.1    Cook, W.2
  • 7
    • 0032661588 scopus 로고    scopus 로고
    • Neural network-based adaptive production control system for a flexible manufacturing cell under a random environment
    • Arzi, Y., and L. Iaroslavitz. 1999. Neural network-based adaptive production control system for a flexible manufacturing cell under a random environment. IIE Transactions (Institute of Industrial Engineers) 31(3):217-230.
    • (1999) IIE Transactions (Institute of Industrial Engineers) , vol.31 , Issue.3 , pp. 217-230
    • Arzi, Y.1    Iaroslavitz, L.2
  • 11
    • 0026852344 scopus 로고
    • Neural networks and operations research: An overview
    • Burke, L, and J. Ignizio. 1992. Neural networks and operations research: An overview. Computers and Operations Research 19:179-189.
    • (1992) Computers and Operations Research , vol.19 , pp. 179-189
    • Burke, L.1    Ignizio, J.2
  • 14
    • 0033224891 scopus 로고    scopus 로고
    • Applications of neural networks to solving SMT scheduling problems-A case study
    • Chen, M., and Y. Dong. 1999. Applications of neural networks to solving SMT scheduling problems-A case study. International Journal of Production Research 37(17):4007-4020.
    • (1999) International Journal of Production Research , vol.37 , Issue.17 , pp. 4007-4020
    • Chen, M.1    Dong, Y.2
  • 16
    • 0035107843 scopus 로고    scopus 로고
    • Competitive neural network to solve scheduling problems
    • Chen, R., and Y. Huang. 2001. Competitive neural network to solve scheduling problems. Neurocomputing 37:177-196.
    • (2001) Neurocomputing , vol.37 , pp. 177-196
    • Chen, R.1    Huang, Y.2
  • 17
    • 0031101086 scopus 로고    scopus 로고
    • Implementation of fuzzy logic systems and neural networks in industry
    • Chih-Ting Du, T., and P. Wolfe. 1997. Implementation of fuzzy logic systems and neural networks in industry. Computers in Industry 32(3):261-272.
    • (1997) Computers in Industry , vol.32 , Issue.3 , pp. 261-272
    • Chih-Ting Du, T.1    Wolfe, P.2
  • 18
    • 0039986700 scopus 로고
    • The use of neural networks in determining operational policies for manufacturing systems
    • Chryssolouris, G., M. Lee, and M. Domroese, 1991. The use of neural networks in determining operational policies for manufacturing systems. Journal of Manufacturing Systems 10:166-175.
    • (1991) Journal of Manufacturing Systems , vol.10 , pp. 166-175
    • Chryssolouris, G.1    Lee, M.2    Domroese, M.3
  • 20
    • 0030086592 scopus 로고    scopus 로고
    • Artificial neural networks for supporting production planning and control
    • Corsten, H., and C. May. 1996. Artificial neural networks for supporting production planning and control. Technovation 16(2):67-76.
    • (1996) Technovation , vol.16 , Issue.2 , pp. 67-76
    • Corsten, H.1    May, C.2
  • 23
    • 0002184666 scopus 로고
    • A status report: Artificial intelligence
    • Dornan, B. 1987. A status report: Artificial intelligence. Production 46-50.
    • (1987) Production , pp. 46-50
    • Dornan, B.1
  • 26
    • 0029294452 scopus 로고
    • Scaling properties of neural networks for job-shop scheduling
    • Foo, S., Y. Takefuji, and H. Szu. 1995. Scaling properties of neural networks for job-shop scheduling. Neurocomputing 8(1):79-91.
    • (1995) Neurocomputing , vol.8 , Issue.1 , pp. 79-91
    • Foo, S.1    Takefuji, Y.2    Szu, H.3
  • 28
    • 0024122608 scopus 로고
    • Stochastic neural networks for solving job shop scheduling: Part 1. Problem presentation
    • Foo, Y., and Y. Takefuji. 1988. Stochastic neural networks for solving job shop scheduling: Part 1. Problem presentation. In Proceedings of the International Conference on Neural Networks 2, pages 275-282.
    • (1988) Proceedings of the International Conference on Neural Networks , vol.2 , pp. 275-282
    • Foo, Y.1    Takefuji, Y.2
  • 29
    • 0024125703 scopus 로고
    • Stochastic neural networks for solving job shop scheduling: Part 2. Architecture and simulations
    • Foo, J., and Y. Takefuji. 1988. Stochastic neural networks for solving job shop scheduling: Part 2. Architecture and simulations. In Proceedings of the International Conference on Neural Networks 2, pages 283-290.
    • (1988) Proceedings of the International Conference on Neural Networks , vol.2 , pp. 283-290
    • Foo, J.1    Takefuji, Y.2
  • 30
    • 0019585243 scopus 로고
    • A review of production scheduling
    • Graves, S.C. 1981. A review of production scheduling. Operations Research 29:646-676.
    • (1981) Operations Research , vol.29 , pp. 646-676
    • Graves, S.C.1
  • 33
    • 0027105364 scopus 로고
    • A supervised neural network approach to optimisation as applied to the N-job, M-Machine job sequencing problem
    • Hayes, P., and S. Sayegh. 1992. A supervised neural network approach to optimisation as applied to the N-job, M-Machine job sequencing problem. In Proceedings of ANNIE'92.
    • (1992) Proceedings of ANNIE'92
    • Hayes, P.1    Sayegh, S.2
  • 36
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimisation problems
    • Hopfield, J., and D. Tank. 1985. Neural computation of decisions in optimisation problems. Biological Cybernetics 52:141-152.
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.1    Tank, D.2
  • 38
    • 0031071088 scopus 로고    scopus 로고
    • Non-energy based neural networks for job-shop scheduling
    • Jeng, M., and C. Chang. 1997. Non-energy based neural networks for job-shop scheduling. Electronics Letters 33(5):399-400.
    • (1997) Electronics Letters , vol.33 , Issue.5 , pp. 399-400
    • Jeng, M.1    Chang, C.2
  • 39
    • 0032163501 scopus 로고    scopus 로고
    • Integration of inductive learning and neural networks for multiobjective FMS scheduling
    • Kim, C., H. Min, and Y. Yih. 1998. Integration of inductive learning and neural networks for multiobjective FMS scheduling. International Journal of Production Research 36(9):2497-2509.
    • (1998) International Journal of Production Research , vol.36 , Issue.9 , pp. 2497-2509
    • Kim, C.1    Min, H.2    Yih, Y.3
  • 41
    • 0033724249 scopus 로고    scopus 로고
    • A neural-net approach to real time flow-shop sequencing
    • Lee, L., and M. Shaw. 2000. A neural-net approach to real time flow-shop sequencing. Computers & Industrial Engineering 38:125-147.
    • (2000) Computers & Industrial Engineering , vol.38 , pp. 125-147
    • Lee, L.1    Shaw, M.2
  • 44
    • 0013195987 scopus 로고
    • Neural network applications for scheduling jobs on parallel machines
    • Lee, Y., and S. Kim. 1993. Neural network applications for scheduling jobs on parallel machines. Computers and Industrial Engineering 25:227-230.
    • (1993) Computers and Industrial Engineering , vol.25 , pp. 227-230
    • Lee, Y.1    Kim, S.2
  • 46
    • 0030147542 scopus 로고    scopus 로고
    • Short-term hydro scheduling using Hopfield neural network
    • Liang, R., and Y. Hsu. 1996. Short-term hydro scheduling using Hopfield neural network. IEEE Pro.-Gener. Transm. Distrib. 143:269-275.
    • (1996) IEEE Pro.-Gener. Transm. Distrib , vol.143 , pp. 269-275
    • Liang, R.1    Hsu, Y.2
  • 47
    • 0034175303 scopus 로고    scopus 로고
    • Intelligent scheduling model and algorithm for manufacturing
    • Liansheng, G., S. Gang, and W. Shuchun. 2000. Intelligent scheduling model and algorithm for manufacturing. Production Planning & Control 11(3):234-243.
    • (2000) Production Planning & Control , vol.11 , Issue.3 , pp. 234-243
    • Liansheng, G.1    Gang, S.2    Shuchun, W.3
  • 48
    • 0034262531 scopus 로고    scopus 로고
    • Developing a neural network approach for intelligent scheduling in GUESS
    • Liebowitz, J., I. Rodens, J. Zeide, and C. Suen. 2000. Developing a neural network approach for intelligent scheduling in GUESS. Expert Systems 17(4):185-190.
    • (2000) Expert Systems , vol.17 , Issue.4 , pp. 185-190
    • Liebowitz, J.1    Rodens, I.2    Zeide, J.3    Suen, C.4
  • 49
    • 0035422218 scopus 로고    scopus 로고
    • If you are a dog lover, build expert systems, if you are a cat lover, build neural networks
    • Liebowitz, J. 2001. If you are a dog lover, build expert systems, if you are a cat lover, build neural networks. Expert Systems with Applications 21:63.
    • (2001) Expert Systems with Applications , vol.21 , pp. 63
    • Liebowitz, J.1
  • 55
    • 0035973393 scopus 로고    scopus 로고
    • A Kohonen self-organizing map approach to addressing a multiple objective, mixedmodel JIT sequencing problem
    • McMullen, P. 2001. A Kohonen self-organizing map approach to addressing a multiple objective, mixedmodel JIT sequencing problem. International Journal of Production Economics 72(1):59-71.
    • (2001) International Journal of Production Economics , vol.72 , Issue.1 , pp. 59-71
    • McMullen, P.1
  • 57
    • 0032121915 scopus 로고    scopus 로고
    • Competitive neural network approach to multi-objective FMS scheduling
    • Min, H., Y. Yih, and C. Kim. 1998. Competitive neural network approach to multi-objective FMS scheduling. International Journal of Production Research 36(7):1749-1765.
    • (1998) International Journal of Production Research , vol.36 , Issue.7 , pp. 1749-1765
    • Min, H.1    Yih, Y.2    Kim, C.3
  • 59
    • 0000107307 scopus 로고
    • Characterizing the manufacturing scheduling problem
    • Panurak, V.H.D. 1991. Characterizing the manufacturing scheduling problem. Journal of Manufacturing Systems 10(3):241-252.
    • (1991) Journal of Manufacturing Systems , vol.10 , Issue.3 , pp. 241-252
    • Panurak, V.H.D.1
  • 60
    • 0033717569 scopus 로고    scopus 로고
    • Scheduling jobs on parallel machines applying neural network and heuristic rules
    • Park, Y., S. Kim, and Y. Lee. 2000. Scheduling jobs on parallel machines applying neural network and heuristic rules. Computers & Industrial Engineering 38(1):189-202.
    • (2000) Computers & Industrial Engineering , vol.38 , Issue.1 , pp. 189-202
    • Park, Y.1    Kim, S.2    Lee, Y.3
  • 65
    • 0242563265 scopus 로고
    • A hybrid neural and symbolic processing approach to flexible manufacturing systems scheduling
    • A. Kadel and G. Langholz, BocaRaton, FL: CRC Press
    • Rabelo, L., and S. Alptekin. 1992. A hybrid neural and symbolic processing approach to flexible manufacturing systems scheduling. In Hybrid Architecture for Intelligent System, eds. A. Kadel and G. Langholz, 381-405, BocaRaton, FL: CRC Press.
    • (1992) Hybrid Architecture for Intelligent System , pp. 381-405
    • Rabelo, L.1    Alptekin, S.2
  • 67
    • 0030705089 scopus 로고    scopus 로고
    • Neural Networks: Friends or foes?
    • Roberts, S., and W. Penny. 1997. Neural Networks: friends or foes? Sensor Review 17(1):64-70.
    • (1997) Sensor Review , vol.17 , Issue.1 , pp. 64-70
    • Roberts, S.1    Penny, W.2
  • 68
    • 85011169138 scopus 로고
    • A recent survey of production scheduling IEEE Transactions on Systems
    • Rodammer, F., and K. White. 1989. A recent survey of production scheduling IEEE Transactions on Systems, Man and Cybernetics 18(6):841-851.
    • (1989) Man and Cybernetics , vol.18 , Issue.6 , pp. 841-851
    • Rodammer, F.1    White, K.2
  • 71
    • 0031627997 scopus 로고    scopus 로고
    • Scheduling with neural networks: A review of the literature and new research directions
    • Sabuncuoglu, I. 1998. Scheduling with neural networks: A review of the literature and new research directions. Production Planning and Control 9(1):2-12.
    • (1998) Production Planning and Control , vol.9 , Issue.1 , pp. 2-12
    • Sabuncuoglu, I.1
  • 72
    • 0028445622 scopus 로고
    • Neural networks for decision support: Problems and opportunities
    • Schocken, S., and G. Ariav. 1994. Neural networks for decision support: Problems and opportunities. Decision Support Systems 11:393-414.
    • (1994) Decision Support Systems , vol.11 , pp. 393-414
    • Schocken, S.1    Ariav, G.2
  • 73
    • 0009767166 scopus 로고
    • Application of artificial intelligence to planning and scheduling in flexible manufacturing
    • A. Kusiak, North Holland
    • Shaw, P., and R. Whinston. 1986. Application of artificial intelligence to planning and scheduling in flexible manufacturing. In Flexible Manufacturing Systems: Methods and Studies, ed. A. Kusiak, 223-242. North Holland.
    • (1986) Flexible Manufacturing Systems: Methods and Studies , pp. 223-242
    • Shaw, P.1    Whinston, R.2
  • 74
    • 84952488322 scopus 로고
    • An expert neural network system for dynamic job shop scheduling
    • Sim, S., K. Yeo, and W. Lee. 1994. An expert neural network system for dynamic job shop scheduling. International Journal of Production Research 32(8):1759-1773.
    • (1994) International Journal of Production Research , vol.32 , Issue.8 , pp. 1759-1773
    • Sim, S.1    Yeo, K.2    Lee, W.3
  • 75
    • 0034123868 scopus 로고    scopus 로고
    • Neural networks in business: Techniques and applications for the operations researcher
    • Smith, K., and J. Gupta. 2000. Neural networks in business: Techniques and applications for the operations researcher. Computers and Operations Research 27:1023-1044.
    • (2000) Computers and Operations Research , vol.27 , pp. 1023-1044
    • Smith, K.1    Gupta, J.2
  • 77
    • 0029410944 scopus 로고
    • Fast heuristic scheduling based on neural networks for real-time systems
    • Thawonmas, R., G. Chakraborty, and N. Shiratori. 1995. Fast heuristic scheduling based on neural networks for real-time systems. Real-Time Systems 9(3):289-304.
    • (1995) Real-Time Systems , vol.9 , Issue.3 , pp. 289-304
    • Thawonmas, R.1    Chakraborty, G.2    Shiratori, N.3
  • 78
    • 0042514536 scopus 로고
    • Applications of neural networks in manufacturing management systems
    • Udo, G., and Y. Gupta. 1994. Applications of neural networks in manufacturing management systems. Production Planning and Control 5:258-270.
    • (1994) Production Planning and Control , vol.5 , pp. 258-270
    • Udo, G.1    Gupta, Y.2
  • 79
    • 0040362367 scopus 로고
    • A goal programming network for mixed integer linear programming: A case study for the job shop scheduling problem
    • Van Hulle, M. 1991. A goal programming network for mixed integer linear programming: A case study for the job shop scheduling problem. International Journal of Neural Systems 2(3):201-209.
    • (1991) International Journal of Neural Systems , vol.2 , Issue.3 , pp. 201-209
    • Van Hulle, M.1
  • 80
    • 0029288001 scopus 로고
    • Intelligent scheduling of FMSs with inductive learning capability using neural networks
    • Wang, L. 1995. Intelligent scheduling of FMSs with inductive learning capability using neural networks. International Journal of Flexible Manufacturing Systems 7(2):147-175.
    • (1995) International Journal of Flexible Manufacturing Systems , vol.7 , Issue.2 , pp. 147-175
    • Wang, L.1
  • 81
    • 0031176505 scopus 로고    scopus 로고
    • Study on application of neural network to dynamic production scheduling for flexible production line
    • Wang, X., W. Song, and Z. Wang. 1997. Study on application of neural network to dynamic production scheduling for flexible production line. Zidonghua Xuebao/Acta Automatica Sinica 23(4):551-554.
    • (1997) Zidonghua Xuebao/Acta Automatica Sinica , vol.23 , Issue.4 , pp. 551-554
    • Wang, X.1    Song, W.2    Wang, Z.3
  • 82
    • 0028375547 scopus 로고
    • Neural networks for job-shop scheduling
    • Willems, T., and J. Rooda. 1994. Neural networks for job-shop scheduling. Control Engineering Practices 2(1):31-39.
    • (1994) Control Engineering Practices , vol.2 , Issue.1 , pp. 31-39
    • Willems, T.1    Rooda, J.2
  • 83
    • 0029518862 scopus 로고
    • Implementing heuristics as an optimisation criterion in neural networks for job-shop scheduling
    • Willems, T., and L. Brandts. 1995. Implementing heuristics as an optimisation criterion in neural networks for job-shop scheduling. Journal of Intelligent Manufacturing 6(6):377-387.
    • (1995) Journal of Intelligent Manufacturing , vol.6 , Issue.6 , pp. 377-387
    • Willems, T.1    Brandts, L.2
  • 84
    • 0034045697 scopus 로고    scopus 로고
    • A bibliography of neural network business application research: 1994-1998
    • Wong, B., V. Lai, and J. Lam. 2000. A bibliography of neural network business application research: 1994-1998. Computers and Operations Research 27(11-12):1045-1076.
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1045-1076
    • Wong, B.1    Lai, V.2    Lam, J.3
  • 85
    • 0033742040 scopus 로고    scopus 로고
    • Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling
    • Yang, S., and D. Wang. 2000. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling. IEEE Transactions on Neural Networks 11(2):474-486.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.2 , pp. 474-486
    • Yang, S.1    Wang, D.2
  • 86
    • 0035452563 scopus 로고    scopus 로고
    • A new adaptive neural network and heuristics hybrid approach for job-shop scheduling
    • Yang, S., and D. Wang. 2001. A new adaptive neural network and heuristics hybrid approach for job-shop scheduling. Computers & Operations Research 28(10):955-971.
    • (2001) Computers & Operations Research , vol.28 , Issue.10 , pp. 955-971
    • Yang, S.1    Wang, D.2
  • 89
    • 0035309164 scopus 로고    scopus 로고
    • Neural network and genetic algorithm-based hybrid approach to expanded job-shop scheduling
    • Yu, H., and W. Liang. 2001. Neural network and genetic algorithm-based hybrid approach to expanded job-shop scheduling. Computers & Industrial Engineering 39(3-4):337-356.
    • (2001) Computers & Industrial Engineering , vol.39 , Issue.3-4 , pp. 337-356
    • Yu, H.1    Liang, W.2
  • 91
    • 0029409188 scopus 로고
    • Neural Network method of solving job-shop scheduling problem
    • Zhang, C., and P. Yan. 1995. Neural Network method of solving job-shop scheduling problem. Acta Automation Sinica 21(6):706-712.
    • (1995) Acta Automation Sinica , vol.21 , Issue.6 , pp. 706-712
    • Zhang, C.1    Yan, P.2
  • 92
    • 0000414908 scopus 로고
    • Applications of neural networks in manufacturing: A state-of-the-art survey
    • Zhang, H., and S. Huang. 1995. Applications of neural networks in manufacturing: A state-of-the-art survey. International Journal of Production Research 33(3):705-728.
    • (1995) International Journal of Production Research , vol.33 , Issue.3 , pp. 705-728
    • Zhang, H.1    Huang, S.2
  • 95
    • 0034180213 scopus 로고    scopus 로고
    • Neural network for job-shop FMS scheduling with multiple objectives and various process plans
    • Zhu, L., and Z. Wu. 2000. Neural network for job-shop FMS scheduling with multiple objectives and various process plans. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University 34(5):661-664.
    • (2000) Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University , vol.34 , Issue.5 , pp. 661-664
    • Zhu, L.1    Wu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.