메뉴 건너뛰기




Volumn 44, Issue 50, 2003, Pages 9025-9028

Electronic and steric effects of ligands as control elements for rhodium-catalyzed asymmetric hydrogenation

Author keywords

Asymmetric hydrogenation; Dimethyl itaconate; Diphosphinites; Methyl(Z) acetamido cinnamate; Rhodium

Indexed keywords

CINNAMIC ACID DERIVATIVE; ITACONIC ACID; NAPHTHOL DERIVATIVE; RHODIUM DERIVATIVE; RHODIUM DIPHOSPHINITE; UNCLASSIFIED DRUG;

EID: 0242458442     PISSN: 00404039     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tetlet.2003.09.217     Document Type: Article
Times cited : (19)

References (21)
  • 1
    • 0003400107 scopus 로고
    • Wiley, New York. Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1999. Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A. ; Yamamoto, H., Eds.; Springer: Berlin, 1999. Handbook of Enantioselective Catalysis; Brunner, H.; Zettlmeier, W., Eds.; VCH: New York, 1993
    • Noyori R. Asymmetric Catalysis in Organic Synthesis. 1994;Wiley, New York, Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1999 Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999 Handbook of Enantioselective Catalysis; Brunner, H.; Zettlmeier, W., Eds.; VCH: New York, 1993.
    • (1994) Asymmetric Catalysis in Organic Synthesis
    • Noyori, R.1
  • 2
    • 85030945937 scopus 로고    scopus 로고
    • In the Rh-catalyzed asymmetric hydrogenation, the orientation of phenyl groups of chiral diphenylphosphine ligands dictates the enantioselectivity. See: (a) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106; (b) Brown, J. M.; Evans, P. L. Tetrahedron 1988, 44, 4905; (c) Giovametti, J. S.; Kelly, C. M.; Landis, C. R. J. Am. Chem. Soc. 1983, 115, 4040; (d) Brunner, H.; Winter, A.; Breu, J. J. Organomet. Chem. 1998, 553, 285
    • In the Rh-catalyzed asymmetric hydrogenation, the orientation of phenyl groups of chiral diphenylphosphine ligands dictates the enantioselectivity. See: (a) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106; (b) Brown, J. M.; Evans, P. L. Tetrahedron 1988, 44, 4905; (c) Giovametti, J. S.; Kelly, C. M.; Landis, C. R. J. Am. Chem. Soc. 1983, 115, 4040; (d) Brunner, H.; Winter, A.; Breu, J. J. Organomet. Chem. 1998, 553, 285.
  • 3
    • 0000171979 scopus 로고    scopus 로고
    • 2 symmetric phosphines: (a) Morimoto, T.; Chiba, M.; Achiwa, K. Tetrahedron Lett. 1989, 30, 735; Chem. Pharm. Bull. 1992, 40, 2894; (b) Morimoto, T.; Nakajima, N.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 23; (c) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, K.; Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064; (d) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure Appl. Chem. 1996, 68, 131
    • 2 symmetric phosphines: (a) Morimoto, T.; Chiba, M.; Achiwa, K. Tetrahedron Lett. 1989, 30, 735; Chem. Pharm. Bull. 1992, 40, 2894; (b) Morimoto, T.; Nakajima, N.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 23; (c) Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, K.; Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064; (d) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure Appl. Chem. 1996, 68, 131.
  • 4
    • 9644267855 scopus 로고    scopus 로고
    • 1 symmetric phosphinites have been described before. See: (a) RajanBabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem. Soc. 1994, 116, 4101; (b) RajanBabu, T. V.; Radetich, B.; You, K. K.; Ayers, T. A.; Casalnuovo, A. L.; Calabrese, J. C. J. Org. Chem. 1999, 64, 3429
    • 1 symmetric phosphinites have been described before. See: (a) RajanBabu, T. V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem. Soc. 1994, 116, 4101; (b) RajanBabu, T. V.; Radetich, B.; You, K. K.; Ayers, T. A.; Casalnuovo, A. L.; Calabrese, J. C. J. Org. Chem. 1999, 64, 3429.
  • 15
    • 0027469773 scopus 로고    scopus 로고
    • The use of phosphinites was first reported in 1978: (a) Cullen, W. R.; Sugi, Y. Tetrahedron Lett. 1978, 1635; (b) Selke, R. React. Kinet. Catal. Lett. 1979, 10, 135; (c) Jacson, R.; Thomson, D. J. J. Organomet. Chem. 1978, 159, C29; (d) Bakos, J.; Tóth, I.; Heil, B. Tetrahedron Lett. 1984, 25, 4965; (e) Selke, R.; Facklam, C.; Foken, H.; Heller, D. Tetrahedron: Asymmetry 1993, 4, 369
    • The use of phosphinites was first reported in 1978: (a) Cullen, W. R.; Sugi, Y. Tetrahedron Lett. 1978, 1635; (b) Selke, R. React. Kinet. Catal. Lett. 1979, 10, 135; (c) Jacson, R.; Thomson, D. J. J. Organomet. Chem. 1978, 159, C29; (d) Bakos, J.; Tóth, I.; Heil, B. Tetrahedron Lett. 1984, 25, 4965; (e) Selke, R.; Facklam, C.; Foken, H.; Heller, D. Tetrahedron: Asymmetry 1993, 4, 369.
  • 16
    • 85030944022 scopus 로고    scopus 로고
    • The synthesis of BINOL-derived diphosphinites is well known: (a) Breikss, A. I. US Patents, 1996, 5523453; (b) Zhang, F.-Y.; Kwok, W. H.; Chan, A. S. C. H. Tetrahedron: Asymmetry 2001, 12, 2337; (c) Guo, R.; Au-Yeng, T. T.-L.; Wu, J.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2002, 13, 2519
    • The synthesis of BINOL-derived diphosphinites is well known: (a) Breikss, A. I. US Patents, 1996, 5523453; (b) Zhang, F.-Y.; Kwok, W. H.; Chan, A. S. C. H. Tetrahedron: Asymmetry 2001, 12, 2337; (c) Guo, R.; Au-Yeng, T. T.-L.; Wu, J.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2002, 13, 2519.
  • 17
    • 85030951127 scopus 로고    scopus 로고
    • 3, 25°C) of 3 and 4: 3a δ 104.0, 3b 106.6, 3d 111.9, 4a 101.8, 4b 104.4, 4d 108.8, 4e 109.1, 4f 109.1 ppm (s)
    • 3, 25°C) of 3 and 4: 3a δ 104.0, 3b 106.6, 3d 111.9, 4a 101.8, 4b 104.4, 4d 108.8, 4e 109.1, 4f 109.1 ppm (s).
  • 19
    • 85030936994 scopus 로고    scopus 로고
    • 1J(P,Rh)=166.2 Hz)
    • 1J(P,Rh)=166.2 Hz).
  • 20
    • 85030942913 scopus 로고    scopus 로고
    • 2 and then shaken at a frequency of 180/min, 75°from the upright position, with horizontal amplitude of 3 centimeters. The reaction was monitored by the change in pressure. The reaction mixture and the distilled products were analyzed by gas chromatography. The enantiomeric excess of the product (2) was determined by GC analysis of the distilled product (Hewlett-Packard HP 4890 gas chromatograph, split/spitless injector, β-DEX 225, 30 m, internal diameter 0.25 mm, film thickness 0.25 μm, carrier gas: 100 kPa nitrogen, F.I.D. detector; the retention times of the enantiomers are 30.5 min (R), 32.1 min (S)). In the case of 6 the reaction mixture was passed through a short silicagel column to remove the catalyst
    • 2 and then shaken at a frequency of 180/min, 75° from the upright position, with horizontal amplitude of 3 centimeters. The reaction was monitored by the change in pressure. The reaction mixture and the distilled products were analyzed by gas chromatography. The enantiomeric excess of the product (2) was determined by GC analysis of the distilled product (Hewlett-Packard HP 4890 gas chromatograph, split/spitless injector, β-DEX 225, 30 m, internal diameter 0.25 mm, film thickness 0.25 μm, carrier gas: 100 kPa nitrogen, F.I.D. detector; the retention times of the enantiomers are 30.5 min (R), 32.1 min (S)). In the case of 6 the reaction mixture was passed through a short silicagel column to remove the catalyst. The enantiomeric excess was determined on CP-CHIRASIL-L-VAL column (25 m, internal diameter 0.25 mm, film thickness 0.12 μm, carrier gas: 100 kPa nitrogen, F.I.D. detector; the retention times of the enantiomers are 32.5 min (R), 34.2 min (S)). The configuration of the prevailing enantiomer in the products was determined by the sign of optical rotation of the hydrogenated product. Conversions were determined by GC (SPB-1).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.