-
1
-
-
0015680909
-
Logical reversibility of computation
-
C. Bennett. Logical reversibility of computation. I.B.M. J. Res. Dev., 17:525-532, 1973.
-
(1973)
I.B.M. J. Res. Dev.
, vol.17
, pp. 525-532
-
-
Bennett, C.1
-
2
-
-
70350767761
-
Effiient adder circuits based on a conservative reversible logic gate
-
April
-
J. W. Bruce, M. A. Thornton, L. Shivakumaraiah, P. S. Kokate, and X. Li. Effiient adder circuits based on a conservative reversible logic gate. In IEEE Symposium on VLSI, pages 83-88, April 2002.
-
(2002)
IEEE Symposium on VLSI
, pp. 83-88
-
-
Bruce, J.W.1
Thornton, M.A.2
Shivakumaraiah, L.3
Kokate, P.S.4
Li, X.5
-
3
-
-
0002433737
-
Quantum mechanical computers
-
R. Feynman. Quantum mechanical computers. Optic News, 11:11-20, 1985.
-
(1985)
Optic News
, vol.11
, pp. 11-20
-
-
Feynman, R.1
-
5
-
-
0036058889
-
Transformation rules for designing cnot-based quantum circuits
-
New Orleans, Louisiana, USA, June 10-14
-
K. Iwama, Y. Kambayashi, and S. Yamashita. Transformation rules for designing cnot-based quantum circuits. In Proceedings of the Design Automation Conference, New Orleans, Louisiana, USA, June 10-14 2002.
-
(2002)
Proceedings of the Design Automation Conference
-
-
Iwama, K.1
Kambayashi, Y.2
Yamashita, S.3
-
7
-
-
0035804255
-
A scheme for efficient quantum computation with linear optics
-
Jan.
-
E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, pages 46-52, Jan. 2001.
-
(2001)
Nature
, pp. 46-52
-
-
Knill, E.1
Laflamme, R.2
Milburn, G.J.3
-
8
-
-
0000328287
-
Irreversibility and heat generation in the computing process
-
R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res., 5:183-191, 1961.
-
(1961)
IBM J. Res.
, vol.5
, pp. 183-191
-
-
Landauer, R.1
-
10
-
-
0027579741
-
Two types of mechanical reversible logic
-
R. C. Merkle. Two types of mechanical reversible logic. Nanotechnology, 4:114-131, 1993.
-
(1993)
Nanotechnology
, vol.4
, pp. 114-131
-
-
Merkle, R.C.1
-
11
-
-
17044458279
-
Spectral and two-place decomposition techniques in reversible logic
-
Aug.
-
D. M. Miller. Spectral and two-place decomposition techniques in reversible logic. In Midwest Symposium on Circuits and Systems, Aug. 2002.
-
(2002)
Midwest Symposium on Circuits and Systems
-
-
Miller, D.M.1
-
16
-
-
8344261284
-
Regularity and symmetry as a base for efficient realization of reversible logic circuits
-
M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-Rabadi, L. Joswiak, A. Coppola, and B. Massey. Regularity and symmetry as a base for efficient realization of reversible logic circuits. In International Workshop on Logic Synthesis, 2001.
-
(2001)
International Workshop on Logic Synthesis
-
-
Perkowski, M.1
Kerntopf, P.2
Buller, A.3
Chrzanowska-Jeske, M.4
Mishchenko, A.5
Song, X.6
Al-Rabadi, A.7
Joswiak, L.8
Coppola, A.9
Massey, B.10
-
18
-
-
0036907069
-
Reversible logic circuit synthesis
-
San Jose, California, USA, Nov 10-14
-
V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic circuit synthesis. In ICCAD, pages 125-132, San Jose, California, USA, Nov 10-14 2002.
-
(2002)
ICCAD
, pp. 125-132
-
-
Shende, V.V.1
Prasad, A.K.2
Markov, I.L.3
Hayes, J.P.4
|