-
1
-
-
0001823368
-
Distribution of modes in fractal resonators
-
(W. Göttinger and H. Eikemeier, eds.), Springer-Verlag, Berlin
-
M. V. Berry, Distribution of modes in fractal resonators, in: Structural Stability in Physics (W. Göttinger and H. Eikemeier, eds.), Springer-Verlag, Berlin, 1979, pp. 51-53.
-
(1979)
Structural Stability in Physics
, pp. 51-53
-
-
Berry, M.V.1
-
2
-
-
0002020217
-
Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals
-
Geometry of the Laplace Operator, Amer. Math. Soc., Providence, R. I.
-
_, Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals, in: Geometry of the Laplace Operator, Proc. Symp. Pure Math., Vol. 36, Amer. Math. Soc., Providence, R. I., 1980, pp. 13-38.
-
(1980)
Proc. Symp. Pure Math.
, vol.36
, pp. 13-38
-
-
-
3
-
-
0001768965
-
Spectral asymptotics of nonsmooth elliptic operators, I & II
-
M. S. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators, I & II, Trans. Moscow Math. Soc. 27 (1972), 3-50
-
(1972)
Trans. Moscow Math. Soc.
, vol.27
, pp. 3-50
-
-
Birman, M.S.1
Solomjak, M.Z.2
-
5
-
-
0000636568
-
Ensembles impropes et nombre dimensionnel
-
G. Bouligand, Ensembles impropes et nombre dimensionnel, Bull. Sci. Math. (2) 52 (1928), 320-344 & 361-376.
-
(1928)
Bull. Sci. Math.
, vol.52
, Issue.2
, pp. 320-344
-
-
Bouligand, G.1
-
6
-
-
0001432945
-
Can one hear the dimension of a fractal?
-
J. Brossard and R. Carmona, Can one hear the dimension of a fractal? Comm. Math. Phys. 104 (1986), 103-122.
-
(1986)
Comm. Math. Phys.
, vol.104
, pp. 103-122
-
-
Brossard, J.1
Carmona, R.2
-
7
-
-
0001665120
-
Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates
-
A. M. Caetano, Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates, J. London Math. Soc. (2) 43 (1991), 431-450.
-
(1991)
J. London Math. Soc.
, vol.43
, Issue.2
, pp. 431-450
-
-
Caetano, A.M.1
-
8
-
-
0011411857
-
On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains
-
to appear
-
_, On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains, Internat. J. Scientific Computing & Modelling (to appear).
-
Internat. J. Scientific Computing & Modelling
-
-
-
9
-
-
0003458535
-
-
English transl., Interscience, New York
-
R. Courant and D. Hubert, Methods of mathematical physics, Vol. I, English transl., Interscience, New York, 1953.
-
(1953)
Methods of Mathematical Physics
, vol.1
-
-
Courant, R.1
Hubert, D.2
-
10
-
-
0001307373
-
Fractals, trees and the Neumann Laplacian
-
W. D. Evans and D. J. Harris, Fractals, trees and the Neumann Laplacian, Math. Ann. 296 (1993), 493-527.
-
(1993)
Math. Ann.
, vol.296
, pp. 493-527
-
-
Evans, W.D.1
Harris, D.J.2
-
13
-
-
33748899731
-
On the Minkowski measurability of fractals
-
to appear
-
_, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc. (to appear).
-
Proc. Amer. Math. Soc.
-
-
-
14
-
-
84968515677
-
An example of a two-term asymptotics for the "counting function" of a fractal drum
-
J. Fleckinger-Pellé and D. G. Vassiliev, An example of a two-term asymptotics for the "counting function" of a fractal drum, Trans. Amer. Math. Soc. 337 (1993), 99-116.
-
(1993)
Trans. Amer. Math. Soc.
, vol.337
, pp. 99-116
-
-
Fleckinger-Pellé, J.1
Vassiliev, D.G.2
-
15
-
-
0030306037
-
Generalized Minkowski content and the vibrations of fractal drums and strings
-
C. Q. He and M. L. Lapidus, Generalized Minkowski content and the vibrations of fractal drums and strings, Mathematical Research Letters 3 (1996), 1-10.
-
(1996)
Mathematical Research Letters
, vol.3
, pp. 1-10
-
-
He, C.Q.1
Lapidus, M.L.2
-
16
-
-
0002428795
-
Quasiconformal mappings and extendability of functions in Sobolev spaces
-
P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88.
-
(1981)
Acta Math.
, vol.147
, pp. 71-88
-
-
Jones, P.W.1
-
18
-
-
84966208492
-
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
-
M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529.
-
(1991)
Trans. Amer. Math. Soc.
, vol.325
, pp. 465-529
-
-
Lapidus, M.L.1
-
19
-
-
0005727771
-
Can one hear the shape of,a fractal drum? Partial resolution of the Weyl-Berry conjecture
-
Geometric Analysis and Computer Graphics (P. Concus et al., eds.), (Berkeley, May 1988), Mathematical Sciences Research Institute Publications, Springer-Verlag, New York
-
Can one hear the shape of ,a fractal drum? Partial resolution of the Weyl-Berry conjecture, in: Geometric Analysis and Computer Graphics (P. Concus et al., eds.), Proc. MSRI Workshop (Berkeley, May 1988), Mathematical Sciences Research Institute Publications, Vol. 17, Springer-Verlag, New York, 1991, pp. 119-126.
-
(1991)
Proc. MSRI Workshop
, vol.17
, pp. 119-126
-
-
-
20
-
-
0040048093
-
Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
-
Differential Equations and Mathematical Physics (C. Bennewitz, ed.), (Birmingham, March 1990), Academic Press, New York
-
Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, in: Differential Equations and Mathematical Physics (C. Bennewitz, ed.), Proc. Fourth UAB Intern. Conf. (Birmingham, March 1990), Academic Press, New York, 1992, pp. 151-182.
-
(1992)
Proc. Fourth UAB Intern. Conf.
, pp. 151-182
-
-
-
21
-
-
0000007374
-
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture
-
Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), (Dundee, Scotland, UK, June 1992), Pitman Research Notes in Mathematics Series 289, Longman Scientific and Technical, London
-
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture, in: Ordinary and Partial Differential Equations (B. D. Sleeman and R. J. Jarvis, eds.), Vol. IV, Proc. Twelth Dundee Intern. Conf. (Dundee, Scotland, UK, June 1992), Pitman Research Notes in Mathematics Series 289, Longman Scientific and Technical, London, 1993, pp. 126-209.
-
(1993)
Proc. Twelth Dundee Intern. Conf.
, vol.4
, pp. 126-209
-
-
-
22
-
-
0010800448
-
Tambour fractal: Vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien
-
M. L. Lapidus and J. Fleckinger-Pellé, Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien, C. R. Acad. Sci. Paris Sér. I Math 306 (1988), 171-175.
-
(1988)
C. R. Acad. Sci. Paris Sér. I Math
, vol.306
, pp. 171-175
-
-
Lapidus, M.L.1
Fleckinger-Pellé, J.2
-
23
-
-
0001893487
-
Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée
-
M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math 313 (1991), 19-24.
-
(1991)
C. R. Acad. Sci. Paris Sér. I Math
, vol.313
, pp. 19-24
-
-
Lapidus, M.L.1
Maier, H.2
-
24
-
-
0003176208
-
The Riemann hypothesis and inverse spectral problems for fractal strings
-
The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. (2) 52 (1995), 15-34.
-
(1995)
J. London Math. Soc.
, vol.52
, Issue.2
, pp. 15-34
-
-
-
25
-
-
0000382625
-
Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals
-
L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 343-348.
-
(1990)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.310
, pp. 343-348
-
-
Lapidus, M.L.1
Pomerance, C.2
-
26
-
-
84963042079
-
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums
-
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London. Math. Soc. (3) 66 (1993), 41-69.
-
(1993)
Proc. London. Math. Soc.
, vol.66
, Issue.3
, pp. 41-69
-
-
-
27
-
-
85012572158
-
Counterexamples to the modified Weyl-Berry conjecture on fractal drums
-
Counterexamples to the modified Weyl-Berry conjecture on fractal drums, Math. Proc. Cambridge Philos. Soc. 119 (1996), 167-178.
-
(1996)
Math. Proc. Cambridge Philos. Soc.
, vol.119
, pp. 167-178
-
-
-
30
-
-
0001639479
-
Valeurs propres de problèmes aux limites elliptiques irréguliers
-
G. Métivier, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France, Mém, 51-52 (1977), 125-219.
-
(1977)
Bull. Soc. Math. France, Mém
, vol.51-52
, pp. 125-219
-
-
Métivier, G.1
-
32
-
-
0003937747
-
-
Academic Press, New York
-
M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Analysis of operators, Academic Press, New York, 1978.
-
(1978)
Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators
, vol.4
-
-
Reed, M.1
Simon, B.2
-
35
-
-
84971877468
-
Two definitions of fractal dimension
-
C. Tricot, Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1988), 57-74.
-
(1988)
Math. Proc. Cambridge Philos. Soc.
, vol.91
, pp. 57-74
-
-
Tricot, C.1
-
36
-
-
0001117305
-
Das asymptotische Verteilungsgezetz der Eigenwerte linearer patieller Differentialgleichungen
-
H. Weyl, Das asymptotische Verteilungsgezetz der Eigenwerte linearer patieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479.
-
(1912)
Math. Ann.
, vol.71
, pp. 441-479
-
-
Weyl, H.1
-
37
-
-
0039180579
-
Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung
-
Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung, J. Angew. Math. 141 (1912), 1-11.
-
(1912)
J. Angew. Math.
, vol.141
, pp. 1-11
-
-
|