-
1
-
-
0001432945
-
Can one hear the dimension of a fractal?
-
[BrCa] J. Brossard and R. Carmona, Can one hear the dimension of a fractal? Comm. Math. Phys. 104 (1986), 103-122.
-
(1986)
Comm. Math. Phys.
, vol.104
, pp. 103-122
-
-
Brossard, J.1
Carmona, R.2
-
2
-
-
0001665120
-
Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates
-
[Ce1] A. M. Caetano, Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates, J. London Math. Soc. (2) 43 (1991), 431-450.
-
(1991)
J. London Math. Soc. (2)
, vol.43
, pp. 431-450
-
-
Caetano, A.M.1
-
3
-
-
0011411857
-
On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains
-
to appear
-
[Ce2] _, On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains, Internat. J. Scientific Computing & Modelling (to appear).
-
Internat. J. Scientific Computing & Modelling
-
-
-
5
-
-
80053335114
-
-
preprint, IHES/M/95/47, Institut des Hautes Etudes Scientifiques, Bures-Sur-Yvette, France, to appear in Memoirs Amer. Math. Soc.
-
[HeLa] C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, preprint, IHES/M/95/47, Institut des Hautes Etudes Scientifiques, Bures-Sur-Yvette, France, to appear in Memoirs Amer. Math. Soc..
-
Generalized Minkowski Content, Spectrum of Fractal Drums, Fractal Strings and the Riemann Zeta-function
-
-
He, C.Q.1
Lapidus, M.L.2
-
6
-
-
84966208492
-
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
-
[La1] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529.
-
(1991)
Trans. Amer. Math. Soc.
, vol.325
, pp. 465-529
-
-
Lapidus, M.L.1
-
7
-
-
0000007374
-
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture
-
Longman, London
-
[La2] _, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture, Pitman Research Notes in Mathematics Series 289, Longman, London, 1993, pp. 126-209.
-
(1993)
Pitman Research Notes in Mathematics Series
, vol.289
, pp. 126-209
-
-
-
8
-
-
0001893487
-
Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée
-
[LaMa1] M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 19-24.
-
(1991)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.313
, pp. 19-24
-
-
Lapidus, M.L.1
Maier, H.2
-
9
-
-
0003176208
-
The Riemann hypothesis and inverse spectral problems for fractal strings
-
[LaMa2] _, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. (2) No. 1, 52 (1995), 15-34.
-
(1995)
J. London Math. Soc. (2)
, vol.52
, Issue.1
, pp. 15-34
-
-
-
10
-
-
0000382625
-
Fonction zêta de riemann et conjecture de Weyl-Berry pour les tambours fractals
-
[LaPo1] M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 343-348.
-
(1990)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.310
, pp. 343-348
-
-
Lapidus, M.L.1
Pomerance, C.2
-
11
-
-
84963042079
-
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums
-
[LaPo2] _, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London. Math. Soc. (3) 66 (1993), 41-69.
-
(1993)
Proc. London. Math. Soc. (3)
, vol.66
, pp. 41-69
-
-
-
12
-
-
84971877468
-
Two definitions of fractal dimension
-
[Tr] C. Tricot, Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1988), 57-74.
-
(1988)
Math. Proc. Cambridge Philos. Soc.
, vol.91
, pp. 57-74
-
-
Tricot, C.1
|