메뉴 건너뛰기




Volumn 3, Issue 1, 1996, Pages 31-40

Generalized Minkowski content and the vibrations of fractal drums and strings

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030306037     PISSN: 10732780     EISSN: None     Source Type: Journal    
DOI: 10.4310/MRL.1996.v3.n1.a3     Document Type: Article
Times cited : (10)

References (12)
  • 1
    • 0001432945 scopus 로고
    • Can one hear the dimension of a fractal?
    • [BrCa] J. Brossard and R. Carmona, Can one hear the dimension of a fractal? Comm. Math. Phys. 104 (1986), 103-122.
    • (1986) Comm. Math. Phys. , vol.104 , pp. 103-122
    • Brossard, J.1    Carmona, R.2
  • 2
    • 0001665120 scopus 로고
    • Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates
    • [Ce1] A. M. Caetano, Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates, J. London Math. Soc. (2) 43 (1991), 431-450.
    • (1991) J. London Math. Soc. (2) , vol.43 , pp. 431-450
    • Caetano, A.M.1
  • 3
    • 0011411857 scopus 로고    scopus 로고
    • On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains
    • to appear
    • [Ce2] _, On the search for the asymptotic behavior of the eigenvalues of the Dirichlet Laplacian for bounded irregular domains, Internat. J. Scientific Computing & Modelling (to appear).
    • Internat. J. Scientific Computing & Modelling
  • 6
    • 84966208492 scopus 로고
    • Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
    • [La1] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529.
    • (1991) Trans. Amer. Math. Soc. , vol.325 , pp. 465-529
    • Lapidus, M.L.1
  • 7
    • 0000007374 scopus 로고
    • Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture
    • Longman, London
    • [La2] _, Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture, Pitman Research Notes in Mathematics Series 289, Longman, London, 1993, pp. 126-209.
    • (1993) Pitman Research Notes in Mathematics Series , vol.289 , pp. 126-209
  • 8
    • 0001893487 scopus 로고
    • Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée
    • [LaMa1] M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry modifiée, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 19-24.
    • (1991) C. R. Acad. Sci. Paris Sér. I Math. , vol.313 , pp. 19-24
    • Lapidus, M.L.1    Maier, H.2
  • 9
    • 0003176208 scopus 로고
    • The Riemann hypothesis and inverse spectral problems for fractal strings
    • [LaMa2] _, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. (2) No. 1, 52 (1995), 15-34.
    • (1995) J. London Math. Soc. (2) , vol.52 , Issue.1 , pp. 15-34
  • 10
    • 0000382625 scopus 로고
    • Fonction zêta de riemann et conjecture de Weyl-Berry pour les tambours fractals
    • [LaPo1] M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 343-348.
    • (1990) C. R. Acad. Sci. Paris Sér. I Math. , vol.310 , pp. 343-348
    • Lapidus, M.L.1    Pomerance, C.2
  • 11
    • 84963042079 scopus 로고
    • The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums
    • [LaPo2] _, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London. Math. Soc. (3) 66 (1993), 41-69.
    • (1993) Proc. London. Math. Soc. (3) , vol.66 , pp. 41-69
  • 12
    • 84971877468 scopus 로고
    • Two definitions of fractal dimension
    • [Tr] C. Tricot, Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1988), 57-74.
    • (1988) Math. Proc. Cambridge Philos. Soc. , vol.91 , pp. 57-74
    • Tricot, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.