-
1
-
-
0002610108
-
The principal term of the spectral asymptotics for nonsmooth elliptic problems
-
M. S. Birman and M. Z. Solomjak. The principal term of the spectral asymptotics for nonsmooth elliptic problems. Funktsionul. Anal, i Prilhozen 4, no. 4 (1970), 1–13.
-
(1970)
Funktsionul. Anal, i Prilhozen
, vol.4
, Issue.4
, pp. 1-13
-
-
Birman, M.S.1
Solomjak, M.Z.2
-
2
-
-
0001432945
-
Can one hear the dimension of a fractal?
-
J. Brossard and R. Carmoxa. Can one hear the dimension of a fractal? Coram. Math. Phys. 104 (1986). 103-122.
-
(1986)
Coram. Math. Phys.
, vol.104
, pp. 103-122
-
-
Brossard, J.1
Carmoxa, R.2
-
4
-
-
85012460552
-
On the Minkowski measurability of fractals
-
to appear
-
K. Falconer. On the Minkowski measurability of fractals. Proc. Amer. Math. Soc, to appear.
-
Proc. Amer. Math. Soc
-
-
Falconer, K.1
-
5
-
-
84968515677
-
An example of a two-term asymptotics for the counting functionʼn of a fractal drum
-
J. Fleckinoer-Pellé and D. G. Vassiliev. An example of a two-term asymptotics for the counting functionʼn of a fractal drum. Trans. Amer. Math. Soc. 337 (1993), 99–116.
-
(1993)
Trans. Amer. Math. Soc.
, vol.337
, pp. 99-116
-
-
Fleckinoer-Pellé, J.1
Vassiliev, D.G.2
-
7
-
-
33847695379
-
Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated
-
N. V. Kuznetsov. Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated. Differential Equations 2 (1966), 715–723.
-
(1966)
Differential Equations
, vol.2
, pp. 715-723
-
-
Kuznetsov, N.V.1
-
8
-
-
84966208492
-
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
-
M. L. Lapidus. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Amer. Math. Soc. 325 (1991), 465–529.
-
(1991)
Trans. Amer. Math. Soc.
, vol.325
, pp. 465-529
-
-
Lapidus, M.L.1
-
9
-
-
77957083459
-
Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function
-
Proc. Fourth UAB Intern. Conf., Birmingham, Alabama, March 1990 (ed. C. Bennewitz, Academic Press
-
M. L. Lapidus. Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function; in Differential Equations and Mathematical Physics. Proc. Fourth UAB Intern. Conf., Birmingham, Alabama, March 1990 (ed. C. Bennewitz, Academic Press, 1992), pp. 151–182.
-
(1992)
Differential Equations and Mathematical Physics
, pp. 151-182
-
-
Lapidus, M.L.1
-
10
-
-
0000007374
-
-
Proc. Twelfth Dundee Intern. Conf., Dundee, Scotland, UK, June 1992 (eds. B. D. Sleeman and R. J. Jarvis), Pitman Research Notes in Math. Series 289 (Longman Scientific and Technical
-
M. L. Lapidus. Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture; in Ordinary and partial differential equations, vol. 4, Proc. Twelfth Dundee Intern. Conf., Dundee, Scotland, UK, June 1992 (eds. B. D. Sleeman and R. J. Jarvis), Pitman Research Notes in Math. Series 289 (Longman Scientific and Technical, 1993), pp. 126–209.
-
(1993)
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media, and the Weyl-Berry conjecture; in Ordinary and partial differential equations
, vol.4
, pp. 126-209
-
-
Lapidus, M.L.1
-
11
-
-
0010800448
-
Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien
-
M. L. Lapidus and J. Flecktnger-Pellé. Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien. CM. Acad. Sci. Paris Sér. IMath. 306 (1988), 171–175.
-
(1988)
CM. Acad. Sci. Paris Sér. IMath.
, vol.306
, pp. 171-175
-
-
Lapidus, M.L.1
Flecktnger-Pellé, J.2
-
12
-
-
0000382625
-
Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals
-
M. L. Lapidus and C. Pomerance. Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals. CM. Acad. Sci. Paris Sér. IMath. 310, No. 6 (1990), 343–348.
-
(1990)
CM. Acad. Sci. Paris Sér. IMath.
, vol.310
, Issue.6
, pp. 343-348
-
-
Lapidus, M.L.1
Pomerance, C.2
-
13
-
-
84963042079
-
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums
-
M. L. Lapidus and C. Pomerance. The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc. London Math. Soc. (3) 66, No. 1 (1993), 41–69.
-
(1993)
Proc. London Math. Soc. (3)
, vol.66
, Issue.1
, pp. 41-69
-
-
Lapidus, M.L.1
Pomerance, C.2
-
14
-
-
85012489142
-
-
Abstract no. 865-11-73 (865th, Tampa, March, Abstracts Amer. Math. Soc. 12, No. 2 (1991), p. 238.
-
M. L. Lapidus and C. Pomerance. Abstract no. 865-11-73 (865th Meeting of the Amer. Math. Soc, Tampa, March 1991), Abstracts Amer. Math. Soc. 12, No. 2 (1991), p. 238.
-
(1991)
Meeting of the Amer. Math. Soc
-
-
Lapidus, M.L.1
Pomerance, C.2
-
15
-
-
49549147199
-
Potential and scattering theory on wildly perturbed domains
-
J. Rauch and M. Taylor. Potential and scattering theory on wildly perturbed domains. J. Fund. Anal. 18 (1975), 25–59.
-
(1975)
J. Fund. Anal.
, vol.18
, pp. 25-59
-
-
Rauch, J.1
Taylor, M.2
|