메뉴 건너뛰기




Volumn 18, Issue 1, 2003, Pages 89-105

Differential-algebraic equations and singular perturbation methods in recurrent neural learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGEBRA; BIFURCATION (MATHEMATICS); COMPUTER SIMULATION; DIFFERENTIAL EQUATIONS; PERTURBATION TECHNIQUES;

EID: 0037959724     PISSN: 14689367     EISSN: None     Source Type: Journal    
DOI: 10.1080/1468936031000086843     Document Type: Article
Times cited : (11)

References (40)
  • 2
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithms and accelerating convergence
    • Atiya, A. F., and Parlos, A. G., 2000, New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Transactions on Neural Networks, 11: 697-709.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 3
    • 0029183826 scopus 로고
    • Gradient descent learning algorithm overview: A general dynamical systems perspective
    • Baldi, P., 1995, Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Transactions on Neural Networks, 6: 182-195.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 182-195
    • Baldi, P.1
  • 5
    • 0003913411 scopus 로고    scopus 로고
    • Learning Algorithms: Theory and Applications in Signal Processing
    • Boca Raton, FL: CRC Press
    • Chen, J. R., Nambiar, R., and Mars, P., 1997, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications (Boca Raton, FL: CRC Press).
    • (1997) Control and Communications
    • Chen, J.R.1    Nambiar, R.2    Mars, P.3
  • 6
    • 0026484428 scopus 로고
    • The construction of arbitrary stable dynamics in nonlinear neural networks
    • Cohen, M. A., 1992a, The construction of arbitrary stable dynamics in nonlinear neural networks, Neural Networks, 5: 83-103.
    • (1992) Neural Networks , vol.5 , pp. 83-103
    • Cohen, M.A.1
  • 7
    • 33646226850 scopus 로고
    • The synthesis of arbitrary stable dynamics in non-linear neural networks II: Feed-back and universality
    • Baltimore
    • Cohen, M. A., 1992b, The synthesis of arbitrary stable dynamics in non-linear neural networks II: feed-back and universality. Proc. IJCNN, Baltimore, Vol. 1. pp. 141-146.
    • (1992) Proc. IJCNN , vol.1 , pp. 141-146
    • Cohen, M.A.1
  • 8
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Cohen, M. A. and Grossberg, S., 1983, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man and Cybernetics, 13: 815-826.
    • (1983) IEEE Transactions on Systems, Man and Cybernetics , vol.13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 9
    • 33646216382 scopus 로고    scopus 로고
    • Neural identification and control using the dynamic Levenberg-Marquardt algorithm
    • London
    • Fernández de Cañete, J., García-Moral, I., and García-Cerezo, A., 1996, Neural identification and control using the dynamic Levenberg-Marquardt algorithm. Proc. EANN'96, London, pp. 147-150.
    • (1996) Proc. EANN'96 , pp. 147-150
    • Fernández de Cañete, J.1    García-Moral, I.2    García-Cerezo, A.3
  • 13
    • 0024909476 scopus 로고
    • Convergent activation dynamics in continuous time networks
    • Hirsch, M. W., 1989, Convergent activation dynamics in continuous time networks. Neural Networks, 2: 331-349.
    • (1989) Neural Networks , vol.2 , pp. 331-349
    • Hirsch, M.W.1
  • 14
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J., 1984, Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Science, 81: 3088-3092.
    • (1984) Proceedings of the National Academy of Science , vol.81 , pp. 3088-3092
    • Hopfield, J.1
  • 16
    • 0033352722 scopus 로고    scopus 로고
    • Stable dynamic back propagation learning in recurrent neural networks
    • Jin, L., and Gupta, M. M., 1999, Stable dynamic back propagation learning in recurrent neural networks. IEEE Transactions on Neural Networks, 10: 1321-1334.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 1321-1334
    • Jin, L.1    Gupta, M.M.2
  • 17
    • 0032442410 scopus 로고    scopus 로고
    • Learning dynamical systems by recurrent neural networks from orbits
    • Kimura, M., and Nakano, R., 1998, Learning dynamical systems by recurrent neural networks from orbits. Neural Networks, 11: 1589-1599.
    • (1998) Neural Networks , vol.11 , pp. 1589-1599
    • Kimura, M.1    Nakano, R.2
  • 18
    • 0026972779 scopus 로고
    • Differential/algebraic equations as stiff ordinary differential equations
    • Knorrenschild, M., 1992, Differential/algebraic equations as stiff ordinary differential equations. SIAM Journal on Numerical Analysis, 29: 1694-1715.
    • (1992) SIAM Journal on Numerical Analysis , vol.29 , pp. 1694-1715
    • Knorrenschild, M.1
  • 20
  • 21
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • Narendra, K. S., and Parthasarathy, K., 1991, Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transactions on Neural Networks, 2: 252-262.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 252-262
    • Narendra, K.S.1    Parthasarathy, K.2
  • 23
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda, F. J., 1987, Generalization of back-propagation to recurrent neural networks. Physical Review Letters, 59:2229-2232.
    • (1987) Physical Review Letters , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 26
    • 0036763367 scopus 로고    scopus 로고
    • Singular bifurcations in higher index differential-algebraic equations
    • Riaza, R., 2002, Singular bifurcations in higher index differential-algebraic equations. Dynamical Systems, 17: 243-261.
    • (2002) Dynamical Systems , vol.17 , pp. 243-261
    • Riaza, R.1
  • 28
    • 0035917079 scopus 로고    scopus 로고
    • Stability of singular equilibria in quasilinear implicit differential equations
    • Riaza, R., and Zufiria, P. J., 2001, Stability of singular equilibria in quasilinear implicit differential equations. Journal of Differential Equations, 171: 24-53.
    • (2001) Journal of Differential Equations , vol.171 , pp. 24-53
    • Riaza, R.1    Zufiria, P.J.2
  • 30
    • 0021445288 scopus 로고
    • Quadratic-type Lyapunov functions for singularly perturbed systems
    • Saberi, A., and Khalil, H., 1984, Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Transactions on Automatic Control, 29: 542-550.
    • (1984) IEEE Transactions on Automatic Control , vol.29 , pp. 542-550
    • Saberi, A.1    Khalil, H.2
  • 31
    • 0035384391 scopus 로고    scopus 로고
    • Burst and spike synchronization of coupled neural oscillators
    • Schwarz, J., Dangelmayr, G., Stevens, A., and Bräuer, K., 2001, Burst and spike synchronization of coupled neural oscillators. Dynamical Systems, 16: 125-156.
    • (2001) Dynamical Systems , vol.16 , pp. 125-156
    • Schwarz, J.1    Dangelmayr, G.2    Stevens, A.3    Bräuer, K.4
  • 32
    • 0026218699 scopus 로고
    • Equilibrium characterization of dynamical neural networks and a systematic synthesis procedure for associative memories
    • Sudharsanan, S. I., and Sundareshan, M. K., 1991a, Equilibrium characterization of dynamical neural networks and a systematic synthesis procedure for associative memories. IEEE Transactions on Neural Networks, 2: 509-521.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 509-521
    • Sudharsanan, S.I.1    Sundareshan, M.K.2
  • 33
    • 0025749653 scopus 로고
    • Exponential stability and a systematic synthesis of a neural network for quadratic minimization
    • Sudharsanan, S. I., and Sundareshan, M. K., 1991b, Exponential stability and a systematic synthesis of a neural network for quadratic minimization. Neural Networks, 4: 599-613.
    • (1991) Neural Networks , vol.4 , pp. 599-613
    • Sudharsanan, S.I.1    Sundareshan, M.K.2
  • 34
    • 0032072476 scopus 로고    scopus 로고
    • Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design
    • Sundareshan, M. K., and Condarcure, T. A., 1998, Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design. IEEE Transactions on Neural Networks, 9: 354-368.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 354-368
    • Sundareshan, M.K.1    Condarcure, T.A.2
  • 35
    • 0033213756 scopus 로고    scopus 로고
    • On redundancy in neural architecture: Dynamics of a simple module-based neural network and initial-state independence
    • Tsutsumi, K., 1999, On redundancy in neural architecture: dynamics of a simple module-based neural network and initial-state independence. Neural Networks, 12: 1075-1085.
    • (1999) Neural Networks , vol.12 , pp. 1075-1085
    • Tsutsumi, K.1
  • 37
    • 0032027745 scopus 로고    scopus 로고
    • Runge-Kutta neural network for identification of dynamical systems in high accuracy
    • Wang, Y. J., and Lin, C. T., 1998, Runge-Kutta neural network for identification of dynamical systems in high accuracy. IEEE Transactions on Neural Networks, 9: 294-307.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 294-307
    • Wang, Y.J.1    Lin, C.T.2
  • 38
    • 0028497220 scopus 로고
    • Exponential stability and oscillation of Hopfield graded response neural networks
    • Yang, H., and Dillon, T. S., 1994, Exponential stability and oscillation of Hopfield graded response neural networks. IEEE Transactions on Neural Networks, 5: 719-729.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 719-729
    • Yang, H.1    Dillon, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.