-
2
-
-
0026954775
-
Neural networks for control systems: A survey
-
Nov.
-
K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems: A survey," Automatica, vol. 28, no. 6, pp. 1083-1112, Nov. 1992.
-
(1992)
Automatica
, vol.28
, Issue.6
, pp. 1083-1112
-
-
Hunt, K.J.1
Sbarbaro, D.2
Zbikowski, R.3
Gawthrop, P.J.4
-
3
-
-
0025399567
-
Identification and control of dynamical system using neural networks
-
K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical system using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, pp. 4-27
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
4
-
-
0026835531
-
Neural network application for direct feedback controllers
-
Y. Ichikawa and T. Sawa, "Neural network application for direct feedback controllers," IEEE Trans. Neural Networks, vol. 3, pp. 224-231, 1992.
-
(1992)
IEEE Trans. Neural Networks
, vol.3
, pp. 224-231
-
-
Ichikawa, Y.1
Sawa, T.2
-
5
-
-
0028399792
-
Memory neural networks for identification and control of dynamical systems
-
P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, "Memory neural networks for identification and control of dynamical systems," IEEE Trans. Neural Networks, vol. 5, pp. 306-319, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 306-319
-
-
Sastry, P.S.1
Santharam, G.2
Unnikrishnan, K.P.3
-
6
-
-
0004503125
-
Adaptive state representation and estimation using recurrent connectionist networks
-
W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press
-
R. J. Williams, "Adaptive state representation and estimation using recurrent connectionist networks," in Neural Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT Press, 1990.
-
(1990)
Neural Networks for Control
-
-
Williams, R.J.1
-
7
-
-
0028391673
-
Application of recurrent multilayer perceptron in modeling complex process dynamics
-
A. G. Parlos, K. T. Chong, and A. F. Atiya, "Application of recurrent multilayer perceptron in modeling complex process dynamics," IEEE Trans. Neural Networks, vol. 5, pp. 255-266, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 255-266
-
-
Parlos, A.G.1
Chong, K.T.2
Atiya, A.F.3
-
8
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
P. J. Werbos, "Backpropagation through time: What it does and how to do it," in Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
9
-
-
0028401356
-
Steepest descent algorithms for neural network controllers and filters
-
S. W. Piche, "Steepest descent algorithms for neural network controllers and filters," IEEE Trans. Neural Networks, vol. 5, pp. 198-212, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 198-212
-
-
Piche, S.W.1
-
12
-
-
0025627940
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 3, pp. 551-560, 1989.
-
(1989)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
13
-
-
0000106040
-
Universal approximation using radial-basis-fünction networks
-
J. Park and I. W. Sandberg, "Universal approximation using radial-basis-fünction networks," Neural Computa., vol. 3, pp. 246-257, 1991.
-
(1991)
Neural Computa.
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
16
-
-
0029264243
-
High-order neural-network structures for identification of dynamical systems
-
E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P. A. Ioannou, "High-order neural-network structures for identification of dynamical systems," IEEE Trans. Neural Networks, vol. 6, pp. 422-431, 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 422-431
-
-
Kosmatopoulos, E.B.1
Polycarpou, M.M.2
Christodoulou, M.A.3
Ioannou, P.A.4
-
20
-
-
0004063090
-
-
New York: Macmillan, ch. 7
-
S. Haykin, Neural Networks. New York: Macmillan, 1994, ch. 7.
-
(1994)
Neural Networks
-
-
Haykin, S.1
|