메뉴 건너뛰기




Volumn 54, Issue 1, 2003, Pages 143-163

On the critical Neumann problem with weight in exterior domains

Author keywords

Critical Sobolev exponent; Exterior domains; Least energy solutions; Neumann problem; Optimal Sobolev inequalities

Indexed keywords

BOUNDARY CONDITIONS; GRAPH THEORY; NONLINEAR EQUATIONS; PARAMETER ESTIMATION;

EID: 0037882021     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(03)00059-2     Document Type: Article
Times cited : (6)

References (28)
  • 1
    • 0002199454 scopus 로고
    • Nonlinear analysis: A tribute in honour of Giovanni Prodi
    • ed. A. Ambrosetti, A. Murino
    • Adimurthi, G. Mancini, Nonlinear Analysis: a tribute in honour of Giovanni Prodi, ed. A. Ambrosetti, A. Murino, Scuola Norm. Sup. Pisa (1991), 9-25.
    • (1991) Scuola Norm. Sup. Pisa , pp. 9-25
    • Adimurthi1    Mancini, G.2
  • 2
    • 0002356162 scopus 로고
    • Effect of geometry and topology of the boundary in critical Neumann problem
    • Adimurthi, G. Mancini, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math. 456 (1994) 1-18.
    • (1994) J. Reine Angew. Math. , vol.456 , pp. 1-18
    • Adimurthi1    Mancini, G.2
  • 3
    • 0000437039 scopus 로고
    • The role of the mean curvature in a semilinear Neumann problem involving critical exponent
    • Adimurthi, G. Mancini, S.L. Yadava, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (3-4) (1995) 591-631.
    • (1995) Comm. Partial Differential Equations , vol.20 , Issue.3-4 , pp. 591-631
    • Adimurthi1    Mancini, G.2    Yadava, S.L.3
  • 4
    • 43949176286 scopus 로고
    • Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
    • Adimurthi, F. Pacella, S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993) 318-350.
    • (1993) J. Funct. Anal. , vol.113 , pp. 318-350
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 5
    • 84972493844 scopus 로고
    • ∞ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
    • ∞ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations 8 (1995) 31-68.
    • (1995) Differential Integral Equations , vol.8 , pp. 31-68
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 7
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • Brézis H., Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36:1983;437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brézis, H.1    Nirenberg, L.2
  • 8
    • 0038508507 scopus 로고    scopus 로고
    • On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity
    • J. Chabrowski, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sci. 50 (2002).
    • (2002) Bull. Pol. Acad. Sci. , vol.50
    • Chabrowski, J.1
  • 9
    • 0038169836 scopus 로고    scopus 로고
    • Mean curvature and least energy solutions for the critical Neumann problem with weight
    • Chabrowski J. Mean curvature and least energy solutions for the critical Neumann problem with weight. B.U.M.I., Ser. B. 5:2002;715-733.
    • (2002) B.U.M.I., Ser. B. , vol.5 , pp. 715-733
    • Chabrowski, J.1
  • 10
    • 0036974699 scopus 로고    scopus 로고
    • Least energy solutions of a critical Neumann problem with weight
    • Chabrowski J., Willem M. Least energy solutions of a critical Neumann problem with weight. Calc. Var. and Partial Diff. Equ. 15:2002;421-431.
    • (2002) Calc. Var. and Partial Diff. Equ. , vol.15 , pp. 421-431
    • Chabrowski, J.1    Willem, M.2
  • 11
    • 84990609068 scopus 로고
    • Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents
    • Escobar J.F. Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents. Comm. Pure Appl. Math. 40:1987;623-657.
    • (1987) Comm. Pure Appl. Math. , vol.40 , pp. 623-657
    • Escobar, J.F.1
  • 13
    • 84974267575 scopus 로고
    • Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions
    • Grossi M., Pacella F. Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions. Proc. Roy. Soc. Edinburgh. 116A:1990;23-43.
    • (1990) Proc. Roy. Soc. Edinburgh , vol.116 A , pp. 23-43
    • Grossi, M.1    Pacella, F.2
  • 14
    • 0032194927 scopus 로고    scopus 로고
    • Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent
    • Gui C., Ghoussoub N. Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent. Math. Z. 229:1998;443-474.
    • (1998) Math. Z. , vol.229 , pp. 443-474
    • Gui, C.1    Ghoussoub, N.2
  • 15
    • 0001294182 scopus 로고
    • The concentration-compactness principle in the calculus of variations, the limit case
    • Lions P.L. The concentration-compactness principle in the calculus of variations, The limit case. Rev. Mat. Iberoamericana. 1(1-2):1985;145-201, 45-120.
    • (1985) Rev. Mat. Iberoamericana , vol.1 , Issue.1-2 , pp. 145-201
    • Lions, P.L.1
  • 16
    • 0012982592 scopus 로고
    • Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions
    • Lions P.L., Pacella F., Tricarico M. Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions. Indiana Univ. Math. J. 37(2):1988;301-324.
    • (1988) Indiana Univ. Math. J. , vol.37 , Issue.2 , pp. 301-324
    • Lions, P.L.1    Pacella, F.2    Tricarico, M.3
  • 17
    • 84973998562 scopus 로고
    • Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent
    • Ni W.M., Pan X.B., Takagi L. Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent. Duke Math. J. 67:1992;1-20.
    • (1992) Duke Math. J. , vol.67 , pp. 1-20
    • Ni, W.M.1    Pan, X.B.2    Takagi, L.3
  • 18
    • 84990581933 scopus 로고
    • On the shape of least-energy solutions to a semilinear Neumann problem
    • Ni W.M., Takagi L. On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44:1991;819-851.
    • (1991) Comm. Pure Appl. Math. , vol.44 , pp. 819-851
    • Ni, W.M.1    Takagi, L.2
  • 19
    • 0032017262 scopus 로고    scopus 로고
    • Semilinear Neumann problem in exterior domains
    • Pan Xing-Bin, Wang Xuefeng Semilinear Neumann problem in exterior domains. Nonlinear Anal. TMA. 31(7):1998;791-821.
    • (1998) Nonlinear Anal. TMA , vol.31 , Issue.7 , pp. 791-821
    • Pan, X.-B.1    Wang, X.2
  • 20
    • 0007030745 scopus 로고    scopus 로고
    • On indefinite superlinear elliptic equations
    • Tehrani H.T. On indefinite superlinear elliptic equations. Calc. Var. 4:1996;139-153.
    • (1996) Calc. Var. , vol.4 , pp. 139-153
    • Tehrani, H.T.1
  • 21
    • 0001173375 scopus 로고
    • Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
    • Wang X.J. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J. Differential Equation. 93:1991;283-310.
    • (1991) J. Differential Equation , vol.93 , pp. 283-310
    • Wang, X.J.1
  • 22
    • 0008983177 scopus 로고
    • On the existence of positive solutions for semilinear Neumann problem in exterior domains
    • Wang Z.Q. On the existence of positive solutions for semilinear Neumann problem in exterior domains. Comm. Partial Differential Equations. 17:1992;1309-1325.
    • (1992) Comm. Partial Differential Equations , vol.17 , pp. 1309-1325
    • Wang, Z.Q.1
  • 23
    • 0001279483 scopus 로고
    • Remarks on a nonlinear Neumann problem with critical exponent
    • Wang Z.Q. Remarks on a nonlinear Neumann problem with critical exponent. Houston J. Math. 20(4):1994;671-694.
    • (1994) Houston J. Math. , vol.20 , Issue.4 , pp. 671-694
    • Wang, Z.Q.1
  • 24
    • 84973975136 scopus 로고
    • High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents
    • Wang Z.Q. High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents. Proc. Roy. Soc. Edinburgh. 125A:1995;1013-1029.
    • (1995) Proc. Roy. Soc. Edinburgh , vol.125 A , pp. 1013-1029
    • Wang, Z.Q.1
  • 25
    • 84972510204 scopus 로고
    • The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents
    • Wang Z.Q. The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents. Differential Integral Equations. 8(6):1995;1533-1554.
    • (1995) Differential Integral Equations , vol.8 , Issue.6 , pp. 1533-1554
    • Wang, Z.Q.1
  • 26
    • 0030558813 scopus 로고    scopus 로고
    • Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
    • Wang Z.Q. Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains. Nonlinear Anal. TMA. 27(11):1996;1281-1306.
    • (1996) Nonlinear Anal. TMA , vol.27 , Issue.11 , pp. 1281-1306
    • Wang, Z.Q.1
  • 27
    • 0000610793 scopus 로고    scopus 로고
    • Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
    • Wang Z.Q. Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains. Calc. Var. 8:1999;109-122.
    • (1999) Calc. Var. , vol.8 , pp. 109-122
    • Wang, Z.Q.1
  • 28
    • 0003153589 scopus 로고    scopus 로고
    • Sobolev inequalities with interior norms
    • Zhu M. Sobolev inequalities with interior norms. Calc. Var. 8:1999;27-43.
    • (1999) Calc. Var. , vol.8 , pp. 27-43
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.