-
1
-
-
0002199454
-
The Neumann problem for elliptic equations with critical non-linearity, A tribute in honor of G.Prodi
-
[AM]
-
[AM] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical non-linearity, A tribute in honor of G.Prodi, Scuola Norm. Sup. Pisa (1991), 9-25.
-
(1991)
Scuola Norm. Sup. Pisa
, pp. 9-25
-
-
Adimurthi, M.G.1
-
2
-
-
43949176286
-
Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
-
[APY]
-
[APY] Adimurthi, Pacella F., Yadava S.L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Func. Anal. 113 (1993), 318-350.
-
(1993)
J. Func. Anal.
, vol.113
, pp. 318-350
-
-
Adimurthi, P.F.1
Pacella, F.2
Yadava, S.L.3
-
4
-
-
84990613834
-
Positive solutions of nonlinear elliptic equations involving critical exponents
-
[BN]
-
[BN] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
-
(1983)
Comm. Pure Appl. Math.
, vol.36
, pp. 437-477
-
-
Brezis, H.1
Nirenberg, L.2
-
6
-
-
84974267575
-
Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions
-
[GP]
-
[GP] Grossi M., Pacella F., Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh 116A (1990), 23-43.
-
(1990)
Proc. Roy. Soc. Edinburgh
, vol.116 A
, pp. 23-43
-
-
Grossi, M.1
Pacella, F.2
-
7
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations, the locally compact case, Part 1 and Part 2
-
[L1]
-
[L1] Lions P.L., The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and Part 2, Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984), 109-145, 223-283.
-
(1984)
Ann. Inst. H. Poincaré Anal. Nonlinéaire
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
8
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations, the limit case
-
[L2]
-
[L2] Lions P.L., The concentration-compactness principle in the calculus of variations, The limit case, Rev. Mat. Ibero americana, 1 (1985), 145-201 and 2 (1985), 45-121.
-
(1985)
Rev. Mat. Ibero Americana
, vol.1
, pp. 145-201
-
-
Lions, P.L.1
-
9
-
-
0001294182
-
-
[L2] Lions P.L., The concentration-compactness principle in the calculus of variations, The limit case, Rev. Mat. Ibero americana, 1 (1985), 145-201 and 2 (1985), 45-121.
-
(1985)
Rev. Mat. Ibero Americana
, vol.2
, pp. 45-121
-
-
-
10
-
-
0001164698
-
On Neumann problems for semilinear elliptic equations with critical nonlinearity: Existence and symmetry of multi-peaked solutions
-
[MSW]
-
[MSW] Maier S., Schmitt K., Wang Z.-Q., On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. in PDEs, 22 (1997), 1493-1527.
-
(1997)
Comm. in PDEs
, vol.22
, pp. 1493-1527
-
-
Maier, S.1
Schmitt, K.2
Wang, Z.-Q.3
-
11
-
-
84973998562
-
Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponents
-
[NPT]
-
[NPT] Ni W.-M., Pan X.-B., Takagi I., Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1-20.
-
(1992)
Duke Math. J.
, vol.67
, pp. 1-20
-
-
Ni, W.-M.1
Pan, X.-B.2
Takagi, I.3
-
12
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
[NT1]
-
[NT1] Ni W.-M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 45 (1991), 819-851.
-
(1991)
Comm. Pure Appl. Math.
, vol.45
, pp. 819-851
-
-
Ni, W.-M.1
Takagi, I.2
-
13
-
-
84971179248
-
Locating the peaks of least-energy solutions to a semilinear Neumann problem
-
[NT2]
-
[NT2] Ni W.-M., Takagi I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
-
(1993)
Duke Math. J.
, vol.70
, pp. 247-281
-
-
Ni, W.-M.1
Takagi, I.2
-
14
-
-
0002783768
-
The principle of symmetric criticality
-
[P]
-
[P] Palais R., The principle of symmetric criticality. Comm. Math. Phys. 69 (1979), 19-30.
-
(1979)
Comm. Math. Phys.
, vol.69
, pp. 19-30
-
-
Palais, R.1
-
16
-
-
34250392866
-
Best constants in Sobolev inequality
-
[T]
-
[T] Talenti G., Best constants in Sobolev inequality, Annali di Mat. 110 (1976), 353-372.
-
(1976)
Annali Di Mat.
, vol.110
, pp. 353-372
-
-
Talenti, G.1
-
17
-
-
0001173375
-
Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
-
[Wx]
-
[Wx] Wang X.-J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equ. 93 (1991), 283-310.
-
(1991)
J. Diff. Equ.
, vol.93
, pp. 283-310
-
-
Wang, X.-J.1
-
18
-
-
0013494236
-
On the shape of solutions for a nonlinear Neumann problem in symmetric domains
-
[Wz1]
-
[Wz1] Wang Z.-Q., On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lectures in Applied Math. 29 (1993), 433-442.
-
(1993)
Lectures in Applied Math.
, vol.29
, pp. 433-442
-
-
Wang, Z.-Q.1
-
19
-
-
84973975136
-
High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent
-
[Wz2]
-
[Wz2] Wang Z.-Q., High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh 125A (1995), 1003-1029.
-
(1995)
Proc. Roy. Soc. Edinburgh
, vol.125 A
, pp. 1003-1029
-
-
Wang, Z.-Q.1
-
20
-
-
84972510204
-
The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents
-
[Wz3]
-
[Wz3] Wang Z.-Q., The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents, Diff. and Integ. Equa. 8 (1995), 1533-1554.
-
(1995)
Diff. and Integ. Equa.
, vol.8
, pp. 1533-1554
-
-
Wang, Z.-Q.1
-
21
-
-
0030558813
-
Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
-
[Wz4]
-
[Wz4] Wang Z.-Q., Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonlinear Anal. TMA 27 (1996), 1281-1306.
-
(1996)
Nonlinear Anal. TMA
, vol.27
, pp. 1281-1306
-
-
Wang, Z.-Q.1
|