메뉴 건너뛰기




Volumn 8, Issue 2, 1999, Pages 109-122

Existence and nonexistence of G - Least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000610793     PISSN: 09442669     EISSN: None     Source Type: Journal    
DOI: 10.1007/s005260050119     Document Type: Article
Times cited : (14)

References (21)
  • 1
    • 0002199454 scopus 로고
    • The Neumann problem for elliptic equations with critical non-linearity, A tribute in honor of G.Prodi
    • [AM]
    • [AM] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical non-linearity, A tribute in honor of G.Prodi, Scuola Norm. Sup. Pisa (1991), 9-25.
    • (1991) Scuola Norm. Sup. Pisa , pp. 9-25
    • Adimurthi, M.G.1
  • 2
    • 43949176286 scopus 로고
    • Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
    • [APY]
    • [APY] Adimurthi, Pacella F., Yadava S.L., Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Func. Anal. 113 (1993), 318-350.
    • (1993) J. Func. Anal. , vol.113 , pp. 318-350
    • Adimurthi, P.F.1    Pacella, F.2    Yadava, S.L.3
  • 4
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical exponents
    • [BN]
    • [BN] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
    • (1983) Comm. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brezis, H.1    Nirenberg, L.2
  • 6
    • 84974267575 scopus 로고
    • Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions
    • [GP]
    • [GP] Grossi M., Pacella F., Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh 116A (1990), 23-43.
    • (1990) Proc. Roy. Soc. Edinburgh , vol.116 A , pp. 23-43
    • Grossi, M.1    Pacella, F.2
  • 7
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations, the locally compact case, Part 1 and Part 2
    • [L1]
    • [L1] Lions P.L., The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and Part 2, Ann. Inst. H. Poincaré Anal. Nonlinéaire 1 (1984), 109-145, 223-283.
    • (1984) Ann. Inst. H. Poincaré Anal. Nonlinéaire , vol.1 , pp. 109-145
    • Lions, P.L.1
  • 8
    • 0001294182 scopus 로고
    • The concentration-compactness principle in the calculus of variations, the limit case
    • [L2]
    • [L2] Lions P.L., The concentration-compactness principle in the calculus of variations, The limit case, Rev. Mat. Ibero americana, 1 (1985), 145-201 and 2 (1985), 45-121.
    • (1985) Rev. Mat. Ibero Americana , vol.1 , pp. 145-201
    • Lions, P.L.1
  • 9
    • 0001294182 scopus 로고
    • [L2] Lions P.L., The concentration-compactness principle in the calculus of variations, The limit case, Rev. Mat. Ibero americana, 1 (1985), 145-201 and 2 (1985), 45-121.
    • (1985) Rev. Mat. Ibero Americana , vol.2 , pp. 45-121
  • 10
    • 0001164698 scopus 로고    scopus 로고
    • On Neumann problems for semilinear elliptic equations with critical nonlinearity: Existence and symmetry of multi-peaked solutions
    • [MSW]
    • [MSW] Maier S., Schmitt K., Wang Z.-Q., On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. in PDEs, 22 (1997), 1493-1527.
    • (1997) Comm. in PDEs , vol.22 , pp. 1493-1527
    • Maier, S.1    Schmitt, K.2    Wang, Z.-Q.3
  • 11
    • 84973998562 scopus 로고
    • Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponents
    • [NPT]
    • [NPT] Ni W.-M., Pan X.-B., Takagi I., Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1-20.
    • (1992) Duke Math. J. , vol.67 , pp. 1-20
    • Ni, W.-M.1    Pan, X.-B.2    Takagi, I.3
  • 12
    • 84990581933 scopus 로고
    • On the shape of least-energy solutions to a semilinear Neumann problem
    • [NT1]
    • [NT1] Ni W.-M., Takagi I., On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 45 (1991), 819-851.
    • (1991) Comm. Pure Appl. Math. , vol.45 , pp. 819-851
    • Ni, W.-M.1    Takagi, I.2
  • 13
    • 84971179248 scopus 로고
    • Locating the peaks of least-energy solutions to a semilinear Neumann problem
    • [NT2]
    • [NT2] Ni W.-M., Takagi I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
    • (1993) Duke Math. J. , vol.70 , pp. 247-281
    • Ni, W.-M.1    Takagi, I.2
  • 14
    • 0002783768 scopus 로고
    • The principle of symmetric criticality
    • [P]
    • [P] Palais R., The principle of symmetric criticality. Comm. Math. Phys. 69 (1979), 19-30.
    • (1979) Comm. Math. Phys. , vol.69 , pp. 19-30
    • Palais, R.1
  • 16
    • 34250392866 scopus 로고
    • Best constants in Sobolev inequality
    • [T]
    • [T] Talenti G., Best constants in Sobolev inequality, Annali di Mat. 110 (1976), 353-372.
    • (1976) Annali Di Mat. , vol.110 , pp. 353-372
    • Talenti, G.1
  • 17
    • 0001173375 scopus 로고
    • Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
    • [Wx]
    • [Wx] Wang X.-J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equ. 93 (1991), 283-310.
    • (1991) J. Diff. Equ. , vol.93 , pp. 283-310
    • Wang, X.-J.1
  • 18
    • 0013494236 scopus 로고
    • On the shape of solutions for a nonlinear Neumann problem in symmetric domains
    • [Wz1]
    • [Wz1] Wang Z.-Q., On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lectures in Applied Math. 29 (1993), 433-442.
    • (1993) Lectures in Applied Math. , vol.29 , pp. 433-442
    • Wang, Z.-Q.1
  • 19
    • 84973975136 scopus 로고
    • High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent
    • [Wz2]
    • [Wz2] Wang Z.-Q., High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh 125A (1995), 1003-1029.
    • (1995) Proc. Roy. Soc. Edinburgh , vol.125 A , pp. 1003-1029
    • Wang, Z.-Q.1
  • 20
    • 84972510204 scopus 로고
    • The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents
    • [Wz3]
    • [Wz3] Wang Z.-Q., The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents, Diff. and Integ. Equa. 8 (1995), 1533-1554.
    • (1995) Diff. and Integ. Equa. , vol.8 , pp. 1533-1554
    • Wang, Z.-Q.1
  • 21
    • 0030558813 scopus 로고    scopus 로고
    • Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
    • [Wz4]
    • [Wz4] Wang Z.-Q., Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonlinear Anal. TMA 27 (1996), 1281-1306.
    • (1996) Nonlinear Anal. TMA , vol.27 , pp. 1281-1306
    • Wang, Z.-Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.