-
1
-
-
0002199454
-
The Neumann problem for elliptic equations with critical nonlinearity
-
A tribute in honor of G. Prodi
-
ADIMURTHI - G. MANCINI, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25.
-
(1991)
Scuola Norm. Sup. Pisa
, pp. 9-25
-
-
Adimurthi1
Mancini, G.2
-
2
-
-
0002356162
-
Effect of geometry and topology of the boundary in critical Neumann problem
-
ADIMURTHI - G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18.
-
(1994)
J. Reine Angew. Math.
, vol.456
, pp. 1-18
-
-
Adimurthi1
Mancini, G.2
-
3
-
-
0000437039
-
The role of the mean curvature in a semilinear Neumann problem involving critical exponent
-
ADIMURTHI - G. MANCINI - S. L. YADAVA, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631.
-
(1995)
Comm. in P.D.E.
, vol.20
, Issue.3-4
, pp. 591-631
-
-
Adimurthi1
Mancini, G.2
Yadava, S.L.3
-
4
-
-
43949176286
-
Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
-
ADIMURTHI - F. PACELLA - S. L. YADAVA, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.
-
(1993)
J. Funct. Anal.
, vol.113
, pp. 318-350
-
-
Adimurthi1
Pacella, F.2
Yadava, S.L.3
-
5
-
-
84972493844
-
∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
-
∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68.
-
(1995)
Diff. Int. Eq.
, vol.8
, pp. 31-68
-
-
Adimurthi1
Pacella, F.2
Yadava, S.L.3
-
7
-
-
84990613834
-
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
-
H. BRÉZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
-
(1983)
Commun. Pure Appl. Math.
, vol.36
, pp. 437-477
-
-
Brézis, H.1
Nirenberg, L.2
-
8
-
-
85021134889
-
Least energy solutions of a critical Neumann problem with weight
-
J. CHABROWSKI - M. WILLEM, Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var.
-
Calc. Var.
-
-
Chabrowski, J.1
Willem, M.2
-
9
-
-
0012940545
-
Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds
-
Z. DJADLI, Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326.
-
(1999)
Calc. Var.
, vol.8
, pp. 293-326
-
-
Djadli, Z.1
-
10
-
-
0002193410
-
Extremal functions for optimal Sobolev inequalities on compact manifolds
-
Z. DJADLI - O. DRUET, Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84.
-
(2001)
Calc. Var.
, vol.12
, pp. 59-84
-
-
Djadli, Z.1
Druet, O.2
-
11
-
-
0033444350
-
The best constants problem in Sobolev inequalities
-
O. DRUET, The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346.
-
(1999)
Math. Ann.
, vol.314
, pp. 327-346
-
-
Druet, O.1
-
12
-
-
84990609068
-
Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents
-
J. F. ESCOBAR, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657.
-
(1987)
Commun. Pure Appl. Math.
, vol.40
, pp. 623-657
-
-
Escobar, J.F.1
-
13
-
-
84974267575
-
Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions
-
M. GROSSI - F. PACELLA, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43.
-
(1990)
Proc. of the Royal Society of Edinburgh
, vol.116 A
, pp. 23-43
-
-
Grossi, M.1
Pacella, F.2
-
14
-
-
0032194927
-
Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent
-
C. GUI - N. GHOUSSOUB, Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.
-
(1998)
Math. Z.
, vol.229
, pp. 443-474
-
-
Gui, C.1
Ghoussoub, N.2
-
15
-
-
0003228562
-
Sobolev spaces on Riemannian manifolds
-
Springer
-
E. HEBEY, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35.
-
(1996)
Lecture Notes in Mathematics
, pp. 16-35
-
-
Hebey, E.1
-
16
-
-
0030356364
-
Meilleures constantes dans le théorème d'inclusion de Sobolev
-
E. HEBEY - M. VAUGON, Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93.
-
(1996)
I.H.P. Analyse Non-Linéaire
, vol.13
, pp. 57-93
-
-
Hebey, E.1
Vaugon, M.2
-
17
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations, the limit case
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120.
-
(1985)
Revista Math. Iberoamericana
, vol.1
, Issue.1-2
, pp. 145-201
-
-
Lions, P.L.1
-
18
-
-
0012982592
-
Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions
-
P. L. LIONS - F. PACELLA - M. TRICARICO, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324.
-
(1988)
Indiana Univ. Math. J.
, vol.37
, Issue.2
, pp. 301-324
-
-
Lions, P.L.1
Pacella, F.2
Tricarico, M.3
-
19
-
-
84973998562
-
Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent
-
W. M. NI - X. B. PAN - L. TAKAGI, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20.
-
(1992)
Duke Math. J.
, vol.67
, pp. 1-20
-
-
Ni, W.M.1
Pan, X.B.2
Takagi, L.3
-
20
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
W. M. NI - L. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
-
(1991)
Comm. Pure Appl. Math.
, vol.44
, pp. 819-851
-
-
Ni, W.M.1
Takagi, L.2
-
21
-
-
0001173375
-
Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
-
X. J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310.
-
(1991)
J. Diff. Eq.
, vol.93
, pp. 283-310
-
-
Wang, X.J.1
-
22
-
-
0013494236
-
On the shape of solutions for a nonlinear Neumann problem in symmetric domains
-
Z. Q. WANG, On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442.
-
(1993)
Lect. in Appl. Math.
, vol.29
, pp. 433-442
-
-
Wang, Z.Q.1
-
23
-
-
0001279483
-
Remarks on a nonlinear Neumann problem with critical exponent
-
Z. Q. WANG, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694.
-
(1994)
Houston J. Math.
, vol.20
, Issue.4
, pp. 671-694
-
-
Wang, Z.Q.1
-
24
-
-
84973975136
-
High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents
-
Z. Q. WANG, High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029.
-
(1995)
Proc. Roy. Soc. of Edinburgh
, vol.125 A
, pp. 1013-1029
-
-
Wang, Z.Q.1
-
25
-
-
84972510204
-
The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents
-
Z. Q. WANG, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554.
-
(1995)
Diff. Int. Eq.
, vol.8
, Issue.6
, pp. 1533-1554
-
-
Wang, Z.Q.1
-
26
-
-
0030558813
-
Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
-
Z. Q. WANG, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306.
-
(1996)
Nonl. Anal. T.M.A.
, vol.27
, Issue.11
, pp. 1281-1306
-
-
Wang, Z.Q.1
-
27
-
-
0000610793
-
Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
-
Z. Q. WANG, Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122.
-
(1999)
Calc. Var.
, vol.8
, pp. 109-122
-
-
Wang, Z.Q.1
-
28
-
-
0003153589
-
Sobolev inequalities with interior norms
-
M. ZHU, Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43.
-
(1999)
Calc. Var.
, vol.8
, pp. 27-43
-
-
Zhu, M.1
|