메뉴 건너뛰기




Volumn 5, Issue 3, 2002, Pages 715-733

Mean Curvature and Least Energy Solutions for the Critical Neumann Problem with Weight

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0038169836     PISSN: 03924041     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (28)
  • 1
    • 0002199454 scopus 로고
    • The Neumann problem for elliptic equations with critical nonlinearity
    • A tribute in honor of G. Prodi
    • ADIMURTHI - G. MANCINI, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25.
    • (1991) Scuola Norm. Sup. Pisa , pp. 9-25
    • Adimurthi1    Mancini, G.2
  • 2
    • 0002356162 scopus 로고
    • Effect of geometry and topology of the boundary in critical Neumann problem
    • ADIMURTHI - G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18.
    • (1994) J. Reine Angew. Math. , vol.456 , pp. 1-18
    • Adimurthi1    Mancini, G.2
  • 3
    • 0000437039 scopus 로고
    • The role of the mean curvature in a semilinear Neumann problem involving critical exponent
    • ADIMURTHI - G. MANCINI - S. L. YADAVA, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), 591-631.
    • (1995) Comm. in P.D.E. , vol.20 , Issue.3-4 , pp. 591-631
    • Adimurthi1    Mancini, G.2    Yadava, S.L.3
  • 4
    • 43949176286 scopus 로고
    • Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
    • ADIMURTHI - F. PACELLA - S. L. YADAVA, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), 318-350.
    • (1993) J. Funct. Anal. , vol.113 , pp. 318-350
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 5
    • 84972493844 scopus 로고
    • ∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
    • ∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), 31-68.
    • (1995) Diff. Int. Eq. , vol.8 , pp. 31-68
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 7
    • 84990613834 scopus 로고
    • Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
    • H. BRÉZIS - L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
    • (1983) Commun. Pure Appl. Math. , vol.36 , pp. 437-477
    • Brézis, H.1    Nirenberg, L.2
  • 8
    • 85021134889 scopus 로고    scopus 로고
    • Least energy solutions of a critical Neumann problem with weight
    • J. CHABROWSKI - M. WILLEM, Least energy solutions of a critical Neumann problem with weight, to appear in Calc. Var.
    • Calc. Var.
    • Chabrowski, J.1    Willem, M.2
  • 9
    • 0012940545 scopus 로고    scopus 로고
    • Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds
    • Z. DJADLI, Nonlinear elliptic equations with critical Sobolev exponent on compact riemannian manifolds, Calc. Var., 8 (1999), 293-326.
    • (1999) Calc. Var. , vol.8 , pp. 293-326
    • Djadli, Z.1
  • 10
    • 0002193410 scopus 로고    scopus 로고
    • Extremal functions for optimal Sobolev inequalities on compact manifolds
    • Z. DJADLI - O. DRUET, Extremal functions for optimal Sobolev inequalities on compact manifolds, Calc. Var., 12 (2001), 59-84.
    • (2001) Calc. Var. , vol.12 , pp. 59-84
    • Djadli, Z.1    Druet, O.2
  • 11
    • 0033444350 scopus 로고    scopus 로고
    • The best constants problem in Sobolev inequalities
    • O. DRUET, The best constants problem in Sobolev inequalities, Math. Ann., 314 (1999), 327-346.
    • (1999) Math. Ann. , vol.314 , pp. 327-346
    • Druet, O.1
  • 12
    • 84990609068 scopus 로고
    • Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents
    • J. F. ESCOBAR, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), 623-657.
    • (1987) Commun. Pure Appl. Math. , vol.40 , pp. 623-657
    • Escobar, J.F.1
  • 13
    • 84974267575 scopus 로고
    • Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions
    • M. GROSSI - F. PACELLA, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. of the Royal Society of Edinburgh, 116A (1990), 23-43.
    • (1990) Proc. of the Royal Society of Edinburgh , vol.116 A , pp. 23-43
    • Grossi, M.1    Pacella, F.2
  • 14
    • 0032194927 scopus 로고    scopus 로고
    • Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent
    • C. GUI - N. GHOUSSOUB, Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., 229 (1998), 443-474.
    • (1998) Math. Z. , vol.229 , pp. 443-474
    • Gui, C.1    Ghoussoub, N.2
  • 15
    • 0003228562 scopus 로고    scopus 로고
    • Sobolev spaces on Riemannian manifolds
    • Springer
    • E. HEBEY, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, Springer (1996), 16-35.
    • (1996) Lecture Notes in Mathematics , pp. 16-35
    • Hebey, E.1
  • 16
    • 0030356364 scopus 로고    scopus 로고
    • Meilleures constantes dans le théorème d'inclusion de Sobolev
    • E. HEBEY - M. VAUGON, Meilleures constantes dans le théorème d'inclusion de Sobolev, I.H.P. Analyse non-linéaire, 13 (1996), 57-93.
    • (1996) I.H.P. Analyse Non-Linéaire , vol.13 , pp. 57-93
    • Hebey, E.1    Vaugon, M.2
  • 17
    • 0001294182 scopus 로고
    • The concentration-compactness principle in the calculus of variations, the limit case
    • P. L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), 145-201 and 45-120.
    • (1985) Revista Math. Iberoamericana , vol.1 , Issue.1-2 , pp. 145-201
    • Lions, P.L.1
  • 18
    • 0012982592 scopus 로고
    • Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions
    • P. L. LIONS - F. PACELLA - M. TRICARICO, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37, No. 2 (1988), 301-324.
    • (1988) Indiana Univ. Math. J. , vol.37 , Issue.2 , pp. 301-324
    • Lions, P.L.1    Pacella, F.2    Tricarico, M.3
  • 19
    • 84973998562 scopus 로고
    • Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent
    • W. M. NI - X. B. PAN - L. TAKAGI, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), 1-20.
    • (1992) Duke Math. J. , vol.67 , pp. 1-20
    • Ni, W.M.1    Pan, X.B.2    Takagi, L.3
  • 20
    • 84990581933 scopus 로고
    • On the shape of least-energy solutions to a semilinear Neumann problem
    • W. M. NI - L. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
    • (1991) Comm. Pure Appl. Math. , vol.44 , pp. 819-851
    • Ni, W.M.1    Takagi, L.2
  • 21
    • 0001173375 scopus 로고
    • Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
    • X. J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310.
    • (1991) J. Diff. Eq. , vol.93 , pp. 283-310
    • Wang, X.J.1
  • 22
    • 0013494236 scopus 로고
    • On the shape of solutions for a nonlinear Neumann problem in symmetric domains
    • Z. Q. WANG, On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993), 433-442.
    • (1993) Lect. in Appl. Math. , vol.29 , pp. 433-442
    • Wang, Z.Q.1
  • 23
    • 0001279483 scopus 로고
    • Remarks on a nonlinear Neumann problem with critical exponent
    • Z. Q. WANG, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), 671-694.
    • (1994) Houston J. Math. , vol.20 , Issue.4 , pp. 671-694
    • Wang, Z.Q.1
  • 24
    • 84973975136 scopus 로고
    • High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents
    • Z. Q. WANG, High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. of Edinburgh, 125A (1995), 1013-1029.
    • (1995) Proc. Roy. Soc. of Edinburgh , vol.125 A , pp. 1013-1029
    • Wang, Z.Q.1
  • 25
    • 84972510204 scopus 로고
    • The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents
    • Z. Q. WANG, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), 1533-1554.
    • (1995) Diff. Int. Eq. , vol.8 , Issue.6 , pp. 1533-1554
    • Wang, Z.Q.1
  • 26
    • 0030558813 scopus 로고    scopus 로고
    • Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
    • Z. Q. WANG, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonl. Anal. T.M.A., 27, No. 11 (1996), 1281-1306.
    • (1996) Nonl. Anal. T.M.A. , vol.27 , Issue.11 , pp. 1281-1306
    • Wang, Z.Q.1
  • 27
    • 0000610793 scopus 로고    scopus 로고
    • Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
    • Z. Q. WANG, Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var., 8 (1999), 109-122.
    • (1999) Calc. Var. , vol.8 , pp. 109-122
    • Wang, Z.Q.1
  • 28
    • 0003153589 scopus 로고    scopus 로고
    • Sobolev inequalities with interior norms
    • M. ZHU, Sobolev inequalities with interior norms, Calc. Var., 8 (1999), 27-43.
    • (1999) Calc. Var. , vol.8 , pp. 27-43
    • Zhu, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.