메뉴 건너뛰기




Volumn 42, Issue 3, 2003, Pages 287-296

Entering the black box of neural networks: A descriptive study of clinical variables predicting community-acquired pneumonia

Author keywords

Analysis; Diagnosis computer assisted; Neural networks (computer); Pneumonia; Sensitivity

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER; FEVER; HUMAN; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; PNEUMONIA; PREDICTION; PRIORITY JOURNAL; RESPIRATORY TRACT DISEASE; SENSITIVITY AND SPECIFICITY;

EID: 0037699357     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.1055/s-0038-1634363     Document Type: Article
Times cited : (24)

References (33)
  • 1
    • 0030713041 scopus 로고    scopus 로고
    • Does this patient have community-acquired pneumonia? Diagnosing pneumonia by history and physical examination
    • Metlay JP, Kapoor WN, Fine MJ. Does this patient have community-acquired pneumonia? Diagnosing pneumonia by history and physical examination. JAMA 1997; 278: 1440-5.
    • (1997) JAMA , vol.278 , pp. 1440-1445
    • Metlay, J.P.1    Kapoor, W.N.2    Fine, M.J.3
  • 2
    • 0037351361 scopus 로고    scopus 로고
    • Prediction of community-acquired pneumonia using artificial neural networks
    • Heckerling PS, Gerber BS, Tape TG, Wigton RS. Prediction of community-acquired pneumonia using artificial neural networks. Med Decis Making 2003; 23: 112-21.
    • (2003) Med Decis Making , vol.23 , pp. 112-121
    • Heckerling, P.S.1    Gerber, B.S.2    Tape, T.G.3    Wigton, R.S.4
  • 3
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D. Neural networks in clinical medicine. Med Decis Making 1996; 16: 386-98.
    • (1996) Med Decis Making , vol.16 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 4
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression in predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression in predicting medical outcomes. J Clin Epidemiol 1996; 49: 1225-31.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 6
    • 0033069710 scopus 로고    scopus 로고
    • Partial retraining: A new approach to input relevance determination
    • van de Laar, P, Heskes T, Gielen S. Partial retraining: a new approach to input relevance determination. Int J Neural Systems 1999; 9: 75-85.
    • (1999) Int J Neural Systems , vol.9 , pp. 75-85
    • Van de Laar, P.1    Heskes, T.2    Gielen, S.3
  • 7
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • Hunter A, Kennedy L, Henry J, Ferguson I. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput Meth Prog Biomed 2000; 62: 11-9.
    • (2000) Comput Meth Prog Biomed , vol.62 , pp. 11-19
    • Hunter, A.1    Kennedy, L.2    Henry, J.3    Ferguson, I.4
  • 8
    • 0026438282 scopus 로고
    • Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction
    • Baxt WG. Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med 1992; 21: 1439-44.
    • (1992) Ann Emerg Med , vol.21 , pp. 1439-1444
    • Baxt, W.G.1
  • 9
    • 0025188114 scopus 로고
    • Clinical prediction rule for pulmonary infiltrates
    • Heckerling PS, Tape TG, Wigton RS, et al. Clinical prediction rule for pulmonary infiltrates. Ann Intern Med 1990; 113: 664-70.
    • (1990) Ann Intern Med , vol.113 , pp. 664-670
    • Heckerling, P.S.1    Tape, T.G.2    Wigton, R.S.3
  • 12
    • 0029295229 scopus 로고
    • Bootstrapping confidence intervals for clinical input variable effects in a network trained to identify the presence of acute myocardial infarction
    • Baxt WG, White H. Bootstrapping confidence intervals for clinical input variable effects in a network trained to identify the presence of acute myocardial infarction. Neural Computation 1995; 7: 624-38.
    • (1995) Neural Computation , vol.7 , pp. 624-638
    • Baxt, W.G.1    White, H.2
  • 15
    • 0012674795 scopus 로고    scopus 로고
    • Feed-forward, back-propagation neural network modeling using Mathematica
    • submitted for publication
    • Heckerling PS, Gerber BS. Feed-forward, back-propagation neural network modeling using Mathematica. Comput Meth Prog Biomed (submitted for publication).
    • Comput Meth Prog Biomed
    • Heckerling, P.S.1    Gerber, B.S.2
  • 16
    • 38649132833 scopus 로고
    • Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals - Rating-method data
    • Dorfman DD, Alf E Jr. Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals - rating-method data. J Math Psych 1969; 6: 487-96.
    • (1969) J Math Psych , vol.6 , pp. 487-496
    • Dorfman, D.D.1    Alf E., Jr.2
  • 17
    • 0036095527 scopus 로고    scopus 로고
    • Parametric receiver operating characteristic (ROC) curve analysis using Mathematica
    • Heckerling PS. Parametric receiver operating characteristic (ROC) curve analysis using Mathematica. Comput Meth Prog Biomed 2002; 69: 65-73.
    • (2002) Comput Meth Prog Biomed , vol.69 , pp. 65-73
    • Heckerling, P.S.1
  • 18
    • 0012733376 scopus 로고
    • Connectionist learning procedures
    • Carbonell JG, ed. Cambridge, MA: MIT Press
    • Hinton GE. Connectionist learning procedures. In: Carbonell JG, ed. Machine Learning: Paradigms and Methods. Cambridge, MA: MIT Press; 1990: 185-234.
    • (1990) Machine Learning: Paradigms and Methods , pp. 185-234
    • Hinton, G.E.1
  • 19
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • Garson GD. Interpreting neural network connection weights. AI Expert 1991; 6: 47-51.
    • (1991) AI Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 20
    • 0029779184 scopus 로고    scopus 로고
    • A methodology for simplication and interpretation of backpropagation-based neural network models
    • Glorfeld LW. A methodology for simplication and interpretation of backpropagation-based neural network models. Expert Syst Appl 1996; 10:37-54.
    • (1996) Expert Syst Appl , vol.10 , pp. 37-54
    • Glorfeld, L.W.1
  • 22
    • 0000156174 scopus 로고
    • Stepwise logistic regression
    • Dixon WJ, Brown MB, Engleman L, Frane JW, Hill MA, Jennrich R (ed). Berkeley, California: University of California Press
    • Engleman L. Stepwise logistic regression. In: Dixon WJ, Brown MB, Engleman L, Frane JW, Hill MA, Jennrich R (ed). BMDP Statistical Software. Berkeley, California: University of California Press; 1985: 330-4.
    • (1985) BMDP Statistical Software , pp. 330-334
    • Engleman, L.1
  • 24
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 1991; 115: 843-8.
    • (1991) Ann Intern Med , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 25
    • 0027495376 scopus 로고
    • Neural network in the clinical diagnosis of acute pulmonary embolism
    • Patil S, Henry JW, Rubenfire M, Stein PD. Neural network in the clinical diagnosis of acute pulmonary embolism. Chest 1993; 104: 1685-9.
    • (1993) Chest , vol.104 , pp. 1685-1689
    • Patil, S.1    Henry, J.W.2    Rubenfire, M.3    Stein, P.D.4
  • 26
    • 0027445437 scopus 로고
    • Acute pulmonary embolism: Artificial neural network approach for diagnosis
    • Tourassi GD, Floyd CE, Sostman HD, Coleman RE. Acute pulmonary embolism: artificial neural network approach for diagnosis. Radiology 1993; 189: 555-8.
    • (1993) Radiology , vol.189 , pp. 555-558
    • Tourassi, G.D.1    Floyd, C.E.2    Sostman, H.D.3    Coleman, R.E.4
  • 27
    • 0032694357 scopus 로고    scopus 로고
    • Predicting active pulmonary tuberculosis using an artificial neural network
    • El-Solh AA, Hsiao CB, Goodnough S, Serghani J, Grant BJ. Predicting active pulmonary tuberculosis using an artificial neural network. Chest 1999; 116: 968-73.
    • (1999) Chest , vol.116 , pp. 968-973
    • El-Solh, A.A.1    Hsiao, C.B.2    Goodnough, S.3    Serghani, J.4    Grant, B.J.5
  • 28
    • 0028037047 scopus 로고
    • Artificial intelligence versus logistic regression statistical modeling to predict cardiac complications after non-cardiac surgery
    • Lette J, Colletti BW, Cerino M, et al. Artificial intelligence versus logistic regression statistical modeling to predict cardiac complications after non-cardiac surgery. Clin Cardiol 1994; 17: 609-14.
    • (1994) Clin Cardiol , vol.17 , pp. 609-614
    • Lette, J.1    Colletti, B.W.2    Cerino, M.3
  • 30
    • 0024394581 scopus 로고
    • Clinical criteria for the detection of pneumonia in adults: Guidelines for ordering chest roentgenograms in the emergency department
    • Gennis P, Gallagher J, Falvo C, Baker S, Than W. Clinical criteria for the detection of pneumonia in adults: guidelines for ordering chest roentgenograms in the emergency department. J Emerg Med 1989; 7: 263-8.
    • (1989) J Emerg Med , vol.7 , pp. 263-268
    • Gennis, P.1    Gallagher, J.2    Falvo, C.3    Baker, S.4    Than, W.5
  • 31
    • 0024494043 scopus 로고
    • Decision rules and clinical prediction of pneumonia: Evaluation of low-yield criteria
    • Singal BM, Hedges JR, Radack KL. Decision rules and clinical prediction of pneumonia: evaluation of low-yield criteria. Ann Emerg Med 1989; 18: 13-20.
    • (1989) Ann Emerg Med , vol.18 , pp. 13-20
    • Singal, B.M.1    Hedges, J.R.2    Radack, K.L.3
  • 32
    • 0020728415 scopus 로고
    • Assessment of diagnostic tests when disease verification is subject to selection bias
    • Begg CB, Greenes RA. Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 1983; 39: 207-25.
    • (1983) Biometrics , vol.39 , pp. 207-225
    • Begg, C.B.1    Greenes, R.A.2
  • 33
    • 0034037252 scopus 로고    scopus 로고
    • A comparison of human and machine-based predictions of successful weaning from mechanical ventilation
    • Gottschalk A, Hyzer C, Geer RT. A comparison of human and machine-based predictions of successful weaning from mechanical ventilation. Med Decis Making 2000; 20: 160-9.
    • (2000) Med Decis Making , vol.20 , pp. 160-169
    • Gottschalk, A.1    Hyzer, C.2    Geer, R.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.