메뉴 건너뛰기




Volumn 10, Issue 1, 1996, Pages 37-54

A methodology for simplification and interpretation of backpropagation-based neural network models

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; COMPUTER SIMULATION; DECISION MAKING; EXPERT SYSTEMS; HUMAN COMPUTER INTERACTION; INFERENCE ENGINES; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; OPACITY;

EID: 0029779184     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/0957-4174(95)00032-1     Document Type: Article
Times cited : (55)

References (38)
  • 1
    • 0003259882 scopus 로고
    • Performance comparisons between backpropagation networks and classification trees on three real world applications
    • Touretzky, D. S. (Ed), San Mateo, CA: Morgan Kaufmann Publishers
    • Atlas, L., Cole, R., Connor, J., El-Sharkawi, M., Marks II, R. J., Muthusany, Y., & Barnard, E. (1990). Performance comparisons between backpropagation networks and classification trees on three real world applications. In Touretzky, D. S. (Ed), Advances in Neural Information Processing Systems 2 pp. 441-449. San Mateo, CA: Morgan Kaufmann Publishers.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 441-449
    • Atlas, L.1    Cole, R.2    Connor, J.3    El-Sharkawi, M.4    Marks R.J. II5    Muthusany, Y.6    Barnard, E.7
  • 5
    • 0002954212 scopus 로고
    • Training backprop neural networks
    • Carpenter, W. C. & Hoffman, M. E. (1995). Training backprop neural networks. AI Expert, 10(3), 30-33.
    • (1995) AI Expert , vol.10 , Issue.3 , pp. 30-33
    • Carpenter, W.C.1    Hoffman, M.E.2
  • 6
    • 0005380346 scopus 로고
    • Neural networks primer part III
    • Caudill, M. (1988). Neural networks primer part III. AI Expert, 5(6), 53-59.
    • (1988) AI Expert , vol.5 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 7
    • 0001922283 scopus 로고
    • Neural network training tips and techniques
    • Caudill, M. (1991). Neural network training tips and techniques. AI Expert, 6(1), 56-61.
    • (1991) AI Expert , vol.6 , Issue.1 , pp. 56-61
    • Caudill, M.1
  • 9
    • 0011780476 scopus 로고
    • The robust beauty of improper linear models in decision making
    • Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34(7), 571-82.
    • (1979) American Psychologist , vol.34 , Issue.7 , pp. 571-582
    • Dawes, R.M.1
  • 10
    • 84990617889 scopus 로고
    • Automatic knowledge acquisition and refinement for decision support: A connectionist inductive inference model
    • Deng, Pi-Sheng. (1993). Automatic knowledge acquisition and refinement for decision support: A connectionist inductive inference model. Decision Sciences, 24(2), 371-393.
    • (1993) Decision Sciences , vol.24 , Issue.2 , pp. 371-393
    • Deng, P.-S.1
  • 14
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomy problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomy problems. Annuals of Eugenics, 7, 179-188.
    • (1936) Annuals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 16
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson, G. David. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 47-51.
    • (1991) AI Expert , vol.6 , Issue.4 , pp. 47-51
    • Garson, G.D.1
  • 17
    • 0000854380 scopus 로고
    • Rule-based neural networks for classification and probability estimation
    • Goodman, R. M., Hggins, C. M. & Miller, J. M. (1992). Rule-based neural networks for classification and probability estimation. Neural Computation, 4, 781-804.
    • (1992) Neural Computation , vol.4 , pp. 781-804
    • Goodman, R.M.1    Hggins, C.M.2    Miller, J.M.3
  • 18
    • 84985773782 scopus 로고
    • Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains
    • Hanson, J. V., McDonald, James B. & Stice, J. D. (1992). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 23(3), 704-723.
    • (1992) Decision Sciences , vol.23 , Issue.3 , pp. 704-723
    • Hanson, J.V.1    McDonald, J.B.2    Stice, J.D.3
  • 19
    • 0021777254 scopus 로고
    • The role of induction in knowledge acquisition
    • Hart, A. (1986). The role of induction in knowledge acquisition. Expert Systems, 2, 24-28.
    • (1986) Expert Systems , vol.2 , pp. 24-28
    • Hart, A.1
  • 21
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32, 1-49
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 24
    • 0025513821 scopus 로고
    • Connectionist ideas and algorithms
    • Knight, K. (1990). Connectionist ideas and algorithms. Communications of the ACM, 33(11), 59-74.
    • (1990) Communications of the ACM , vol.33 , Issue.11 , pp. 59-74
    • Knight, K.1
  • 26
    • 0000494466 scopus 로고
    • Optimal brain damage. -
    • Touretzky, D. S. (Ed), San Mateo, CA: Morgan Kaufmann Publishers, 1990
    • LeCun, Y., Denker, J. S. & Solla, S. A. (1990). Optimal brain damage. -In Touretzky, D. S. (Ed), Advances in Neural Information Processing Systems 2, pp. 598-605. San Mateo, CA: Morgan Kaufmann Publishers, 1990.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 598-605
    • Lecun, Y.1    Denker, J.S.2    Solla, S.A.3
  • 28
    • 85029996601 scopus 로고
    • Detemiining the salency of input variables in neural network classifiers
    • Honolulu, Hawaii
    • Nath, R. & Rajagopalan, B. (1994). Detemiining the salency of input variables in neural network classifiers. 1994 Proceedings of the Decision Sciences Institute, pp. 1294-1296. Honolulu, Hawaii.
    • (1994) 1994 Proceedings of the Decision Sciences Institute , pp. 1294-1296
    • Nath, R.1    Rajagopalan, B.2
  • 29
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart, D. E. & McClelland, J. L. (Eds), Cambridge, MA: The MIT Press
    • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning internal representations by error propagation. In Rumelhart, D. E. & McClelland, J. L. (Eds), Parallel Distributed Processing: Volume I, pp. 318-362. Cambridge, MA: The MIT Press.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • Salchenberger, L. M., Cinar, E. M. & Lash, N. A. (1992). Neural networks: A new tool for predicting thrift failures. Decision Sciences, 23(4), 899-916.
    • (1992) Decision Sciences , vol.23 , Issue.4 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 31
    • 0026119038 scopus 로고
    • Symbolic and Neural Learning Algorithms: An experimental comparison
    • Shawlik, J. W., Mooney, R. J. & Towell, G. G. (1991). Symbolic and Neural Learning Algorithms: An experimental comparison. Machine Learning, 6, 111-143.
    • (1991) Machine Learning , vol.6 , pp. 111-143
    • Shawlik, J.W.1    Mooney, R.J.2    Towell, G.G.3
  • 32
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B, 36, 111-48.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-148
    • Stone, M.1
  • 33
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam, K. Y. & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure predictions. Management Science, 38(7), 926-947.
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 36
    • 0012195187 scopus 로고
    • Some asymptotic results for learning in single hidden-layer feedforward network models
    • White, H. (1989). Some asymptotic results for learning in single hidden-layer feedforward network models. Journal of the American Statistical Association, 84(408), 1003-1013.
    • (1989) Journal of the American Statistical Association , vol.84 , Issue.408 , pp. 1003-1013
    • White, H.1
  • 38
    • 84976812797 scopus 로고
    • Artificial neural networks: An emerging new technique
    • Yoon, Y. & Peterson. L. (1992). Artificial neural networks: an emerging new technique. Data Base, 23(1), 55-57.
    • (1992) Data Base , vol.23 , Issue.1 , pp. 55-57
    • Yoon, Y.1    Peterson, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.