-
6
-
-
0013447104
-
-
note
-
In this perspective, the electron density previously shared by the oxygen and the proton is viewed as now residing purely on oxygen, thereby increasing the negative charge on oxygen. Electrostatic stabilization results from the interaction of this increased negative charge with the electron density distribution of the remainder of the molecule, which is viewed as remaining unchanged.
-
-
-
-
8
-
-
0013453728
-
-
note
-
In this way of thinking, the interaction between the "ordinary" partial charges on atoms bonded to each other is ignored, however, since it is assumed to be part of the normal bond energy.
-
-
-
-
9
-
-
0013436372
-
-
note
-
The two definitions of the electrostatic effect might at first appear completely different, but in fact they are quite similar. The definition of the electrostatic effect described here corresponds to the energy associated with adding or removing a proton and leaving both the geometry and the electron density distribution of the remainder of the molecule unchanged, with only one minor exception: the atom actually experiencing protonation or deprotonation is viewed as undergoing a localized relaxation of its electron density distribution. That is, in a deprotonation, the electrons originally in the X-H bond are assumed to relax into a lone pair on X (in analogy to the traditional arrow-pushing of electrons by organic chemists). The physical chemist's definition and the organic chemist's definition of the electrostatic contribution are consequently not so different as they at first appear.
-
-
-
-
10
-
-
0000010481
-
-
For a discussion of inductive and electrostatic effects, and transmission through bonds and through space, see (a) Exner, O. J. Phys. Org. Chem. 1999, 12, 265-274. (b) Charton, M. J. Phys. Org. Chem. 1999, 12, 275-282.
-
(1999)
J. Phys. Org. Chem.
, vol.12
, pp. 265-274
-
-
Exner, O.1
-
11
-
-
0000351903
-
-
For a discussion of inductive and electrostatic effects, and transmission through bonds and through space, see (a) Exner, O. J. Phys. Org. Chem. 1999, 12, 265-274. (b) Charton, M. J. Phys. Org. Chem. 1999, 12, 275-282.
-
(1999)
J. Phys. Org. Chem.
, vol.12
, pp. 275-282
-
-
Charton, M.1
-
12
-
-
0033958872
-
-
and references therein
-
Rablen, P. R. J. Am. Chem. Soc. 2000, 122, 357-368 and references therein.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 357-368
-
-
Rablen, P.R.1
-
14
-
-
11944259183
-
-
Taft, R. W.; Koppel, I. A.; Topsom, R. D.; Anvia, F. J. Am. Chem. Soc. 1990, 112, 2047-2052.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 2047-2052
-
-
Taft, R.W.1
Koppel, I.A.2
Topsom, R.D.3
Anvia, F.4
-
16
-
-
0001220452
-
-
(b) Thomas, T. D.; Siggel, M. R. F.; Streitwieser, A., Jr. J. Mol. Struct. (THEOCHEM) 1988, 165, 309-318.
-
(1988)
J. Mol. Struct. (THEOCHEM)
, vol.165
, pp. 309-318
-
-
Thomas, T.D.1
Siggel, M.R.F.2
Streitwieser A., Jr.3
-
17
-
-
0000520465
-
-
(c) Siggel, M. R. F.; Streitwieser, A., Jr.; Thomas, T. D. J. Am. Chem. Soc. 1988, 110, 8022-8028.
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 8022-8028
-
-
Siggel, M.R.F.1
Streitwieser A., Jr.2
Thomas, T.D.3
-
18
-
-
84962359815
-
-
(d) Wiberg, K. B.; Ochterski, J.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1996, 118, 8291-8299.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 8291-8299
-
-
Wiberg, K.B.1
Ochterski, J.2
Streitwieser A., Jr.3
-
20
-
-
0003922511
-
-
Prentice Hall: Englewood Cliffs, NJ
-
Bruice, P. Y. Organic Chemistry; Prentice Hall: Englewood Cliffs, NJ, 2001; p 829.
-
(2001)
Organic Chemistry
, pp. 829
-
-
Bruice, P.Y.1
-
23
-
-
0037181385
-
-
and references therein
-
Richard, J. P.; Williams, G.; O'Donoghue, A. C.; Amyes, T. L. J. Am. Chem. Soc. 2002. 124, 2957-2968, and references therein.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 2957-2968
-
-
Richard, J.P.1
Williams, G.2
O'Donoghue, A.C.3
Amyes, T.L.4
-
24
-
-
0038269037
-
-
Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J. Chem. Phys. 1996, 104, 2598-2619.
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 2598-2619
-
-
Ochterski, J.W.1
Petersson, G.A.2
Montgomery J.A., Jr.3
-
26
-
-
0013440908
-
-
note
-
The calculated energy for reaction 3.1 might fall outside the experimental range, depending on the assessment one makes of the experimental uncertainty. However, another source of discrepancy between the calculated and experimental values is that the calculated values correspond to zero Kelvin, while the experimental values are for higher temperatures.
-
-
-
-
27
-
-
0001743882
-
-
(a) Ross, B. D.; True, N. S.; Matson, G. B. J. Phys. Chem. 1984, 88, 2675-2678.
-
(1984)
J. Phys. Chem.
, vol.88
, pp. 2675-2678
-
-
Ross, B.D.1
True, N.S.2
Matson, G.B.3
-
31
-
-
0033619843
-
-
(b) Kim, Y.-J.; Streitwieser, A.; Chow, A.; Fraenkel, G. Org. Lett. 1999, 1, 2069-2071.
-
(1999)
Org. Lett.
, vol.1
, pp. 2069-2071
-
-
Kim, Y.-J.1
Streitwieser, A.2
Chow, A.3
Fraenkel, G.4
-
32
-
-
0001766959
-
-
Wiberg, K. B.; Hadad, C. M.; Rablen, P. R.; Cioslowski, J. J. Am. Chem. Soc. 1992, 114, 8644-8654.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 8644-8654
-
-
Wiberg, K.B.1
Hadad, C.M.2
Rablen, P.R.3
Cioslowski, J.4
-
33
-
-
0004133516
-
-
Gaussian, Inc., Pittsburgh, PA
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko. A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A.6); Gaussian, Inc., Pittsburgh, PA, 1998.
-
(1998)
Gaussian 98 (Revision A.6)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Zakrzewski, V.G.7
Montgomery J.A., Jr.8
Stratmann, R.E.9
Burant, J.C.10
Dapprich, S.11
Millam, J.M.12
Daniels, A.D.13
Kudin, K.N.14
Strain, M.C.15
Farkas, O.16
Tomasi, J.17
Barone, V.18
Cossi, M.19
Cammi, R.20
Mennucci, B.21
Pomelli, C.22
Adamo, C.23
Clifford, S.24
Ochterski, J.25
Petersson, G.A.26
Ayala, P.Y.27
Cui, Q.28
Morokuma, K.29
Malick, D.K.30
Rabuck, A.D.31
Raghavachari, K.32
Foresman, J.B.33
Cioslowski, J.34
Ortiz, J.V.35
Stefanov, B.B.36
Liu, G.37
Liashenko, A.38
Piskorz, P.39
Komaromi, I.40
Gomperts, R.41
Martin, R.L.42
Fox, D.J.43
Keith, T.44
Al-Laham, M.A.45
Peng, C.Y.46
Nanayakkara, A.47
Gonzalez, C.48
Challacombe, M.49
Gill, P.M.W.50
Johnson, B.51
Chen, W.52
Wong, M.W.53
Andres, J.L.54
Gonzalez, C.55
Head-Gordon, M.56
Replogle, E.S.57
Pople, J.A.58
more..
-
35
-
-
0013440910
-
-
note
-
In cases where the HF/3-21G* energies of one or more rotamers were similar, HF/6-31G* optimizations were used to verify which conformer was of lowest energy.
-
-
-
-
36
-
-
0013403616
-
-
note
-
There were two minor exceptions: at the B3LYP/6-31+G** level only, acetone and the enolate anion of Z-methyl acetate each had one imaginary frequency in a planar, Cs symmetric geometry. However, magnitudes of these frequencies were so small that the planar structures were used anyway.
-
-
-
-
38
-
-
0345491105
-
-
(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
39
-
-
0038596731
-
-
(c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206.
-
(1989)
Chem. Phys. Lett.
, vol.157
, pp. 200-206
-
-
Miehlich, B.1
Savin, A.2
Stoll, H.3
Preuss, H.4
-
41
-
-
25044455217
-
-
(b) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503-506.
-
(1988)
Chem. Phys. Lett.
, vol.153
, pp. 503-506
-
-
Head-Gordon, M.1
Pople, J.A.2
Frisch, M.J.3
-
42
-
-
0001006433
-
-
(c) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275-280.
-
(1990)
Chem. Phys. Lett.
, vol.166
, pp. 275-280
-
-
Frisch, M.J.1
Head-Gordon, M.2
Pople, J.A.3
-
43
-
-
0004214970
-
-
(d) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281-289.
-
(1990)
Chem. Phys. Lett.
, vol.166
, pp. 281-289
-
-
Frisch, M.J.1
Head-Gordon, M.2
Pople, J.A.3
-
46
-
-
0001108871
-
-
For the determination of 0.97 as a scaling factor for B3LYP zero-point energies, see Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. A 1998, 102, 3782-3797.
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 3782-3797
-
-
Rablen, P.R.1
Lockman, J.W.2
Jorgensen, W.L.3
|