메뉴 건너뛰기




Volumn 14, Issue 2, 2003, Pages 304-316

A recurrent log-linearized Gaussian mixture network

Author keywords

EEG; Gaussian mixture model; Hidden Markov model (HMM); Log linearized model; Neural networks (NNs); Pattern classification; Recurrent neural networks (RNNs)

Indexed keywords

COMPUTER SIMULATION; ELECTROENCEPHALOGRAPHY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MARKOV PROCESSES; MATHEMATICAL MODELS; PROBABILITY; SPEECH RECOGNITION;

EID: 0037361044     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2003.809403     Document Type: Article
Times cited : (50)

References (39)
  • 2
    • 0027167949 scopus 로고
    • Model-based neural networks
    • T. Caelli, D. M. Squire, and T. P. J. Wild, "Model-based neural networks," Neural Networks, vol. 6, no. 5, pp. 613-625, 1993.
    • (1993) Neural Networks , vol.6 , Issue.5 , pp. 613-625
    • Caelli, T.1    Squire, D.M.2    Wild, T.P.J.3
  • 3
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippmann, "Neural network classifiers estimate Bayesian a posteriori probabilities," Neural Comput., vol. 3, pp. 461-483, 1991.
    • (1991) Neural Comput. , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 4
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D. F. Specht, "Probabilistic neural networks," Neural Networks, vol. 3, no. 1, pp. 109-118, 1990.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 5
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • S. F. Fogelman and J. Hault, Eds. New York: Springer-Verlag
    • J. S. Bridle, "Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition," in Neurocomputing: Algorithms, Architectures, and Applications, S. F. Fogelman and J. Hault, Eds. New York: Springer-Verlag, 1989, pp. 227-236.
    • (1989) Neurocomputing: Algorithms, Architectures, and Applications , pp. 227-236
    • Bridle, J.S.1
  • 6
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions
    • May
    • H. G. C. Tråvén, "A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions," IEEE Trans. Neural Networks, vol. 2, pp. 366-377, May 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 366-377
    • Tråvén, H.G.C.1
  • 7
    • 0025957944 scopus 로고
    • Maximum likelihood neural networks for sensor fusion and adaptive classification
    • L. I. Perlovsky and M. M. McManus, "Maximum likelihood neural networks for sensor fusion and adaptive classification," Neural Networks, vol. 4, no. 1, pp. 89-102, 1991.
    • (1991) Neural Networks , vol.4 , Issue.1 , pp. 89-102
    • Perlovsky, L.I.1    McManus, M.M.2
  • 8
    • 0001117567 scopus 로고
    • Motion discrimination method from EMG signal using statistically structured neural networks
    • (in Japanese)
    • T. Tsuji, D. Mori, and T. Ito, "Motion discrimination method from EMG signal using statistically structured neural networks" (in Japanese), Trans. Inst. Elect. Eng. Japan, vol. 112-C, no. 8, pp. 465-473, 1992.
    • (1992) Trans. Inst. Elect. Eng. Japan , vol.112 C , Issue.8 , pp. 465-473
    • Tsuji, T.1    Mori, D.2    Ito, T.3
  • 9
    • 0002412982 scopus 로고    scopus 로고
    • A log-linearized Gaussian mixture network and its application to EEG pattern classification
    • Feb.
    • T. Tsuji, O. Fukuda, H. Ichinobe, and M. Kaneko, "A log-linearized Gaussian mixture network and its application to EEG pattern classification," IEEE Trans. Syst., Man, Cybern, C, vol. 29, pp. 60-72, Feb. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern, C , vol.29 , pp. 60-72
    • Tsuji, T.1    Fukuda, O.2    Ichinobe, H.3    Kaneko, M.4
  • 10
    • 0027872164 scopus 로고
    • Self-organization of Gaussian mixture model for learning class pdfs in pattern classification
    • S. Lee and S. Shimoji, "Self-organization of Gaussian mixture model for learning class pdfs in pattern classification," in Proc. IEEE Int. Joint Conf. Neural Networks, vol. III, 1993, pp. 2492-2495.
    • (1993) Proc. IEEE Int. Joint Conf. Neural Networks , vol.3 , pp. 2492-2495
    • Lee, S.1    Shimoji, S.2
  • 11
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks
    • Sept.
    • R. L. Streit and T. E. Luginbuhl, "Maximum likelihood training of probabilistic neural networks," IEEE Trans. Neural Networks, vol. 5, pp. 764-783, Sept. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 764-783
    • Streit, R.L.1    Luginbuhl, T.E.2
  • 14
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 15
    • 0028543249 scopus 로고
    • Hopfield net generation, encoding and classification of temporal trajectories
    • Nov.
    • H. Bersini, M. Searens, and L. G. Sotelino, "Hopfield net generation, encoding and classification of temporal trajectories," IEEE Trans. Neural Networks, vol. 5, pp. 945-953, Nov. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 945-953
    • Bersini, H.1    Searens, M.2    Sotelino, L.G.3
  • 16
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield, "Neural Networks and physical systems with emergent collective computational abilities," Proc. Nat. Academy Sci. USA, vol. 79, pp. 2554-2558, 1982.
    • (1982) Proc. Nat. Academy Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 18
    • 0032123428 scopus 로고    scopus 로고
    • How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies
    • T. Lin, B. G. Horne, and C. L. Giles, "How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies," Neural Networks, vol. 11, no. 5, pp. 861-868, 1998.
    • (1998) Neural Networks , vol.11 , Issue.5 , pp. 861-868
    • Lin, T.1    Horne, B.G.2    Giles, C.L.3
  • 19
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG
    • A. Petrosian, D. Prokhorov, R. Homan, R. Dasheiff, and D. Wunsch, II, "Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG," Neurocomputing, vol. 30, pp. 201-218, 2000.
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dasheiff, R.4    Wunsch D. II5
  • 20
    • 0032858888 scopus 로고    scopus 로고
    • Dynamical recurrent neural networks toward prediction and modeling of dynamical systems
    • A. Aussem, "Dynamical recurrent neural networks toward prediction and modeling of dynamical systems," Neurocomputing, vol. 28, pp. 207-232, 1999.
    • (1999) Neurocomputing , vol.28 , pp. 207-232
    • Aussem, A.1
  • 21
    • 0031628183 scopus 로고    scopus 로고
    • Long-term prediction models based on mixed order locally recurrent neural networks
    • J. Zhang, A. J. Morris, and E. B. Martin, "Long-term prediction models based on mixed order locally recurrent neural networks," Comput. Chem. Eng., vol. 22, no. 7-8, pp. 1051-1063, 1998.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.7-8 , pp. 1051-1063
    • Zhang, J.1    Morris, A.J.2    Martin, E.B.3
  • 22
    • 0345371518 scopus 로고    scopus 로고
    • Fat tails and nonlinearity in volatility models: What is more important?
    • Tech. Rep., OEFAI-99-05
    • C. Schittenkopf, G. Dorffner, and E. Dockner, "Fat tails and nonlinearity in volatility models: What is more important?,", Tech. Rep., OEFAI-99-05, 1999.
    • (1999)
    • Schittenkopf, C.1    Dorffner, G.2    Dockner, E.3
  • 23
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • P. J. Werbos, "Backpropagation through time: What it does and how to do it," Proc. IEEE, vol. 78, pp. 1550-1560, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 24
    • 33645525898 scopus 로고
    • Terminal attractors for addressable memory in neural networks
    • M. Zak, "Terminal attractors for addressable memory in neural networks," Phys. Lett. A, vol. 133, no. 1,2, pp. 18-22, 1988.
    • (1988) Phys. Lett. A , vol.133 , Issue.1-2 , pp. 18-22
    • Zak, M.1
  • 25
    • 0034476212 scopus 로고    scopus 로고
    • Pattern classification of time-series EMG signals using neural networks
    • T. Tsuji, O. Fukuda, M. Kaneko, and K. Ito, "Pattern classification of time-series EMG signals using neural networks," Int. J. Adaptive Contr. Signal Processing, vol. 14, no. 8, pp. 829-848, 2000.
    • (2000) Int. J. Adaptive Contr. Signal Processing , vol.14 , Issue.8 , pp. 829-848
    • Tsuji, T.1    Fukuda, O.2    Kaneko, M.3    Ito, K.4
  • 26
    • 0000342467 scopus 로고
    • Statistical inference for probabilistic function of finite state Markov chains
    • L. E. Baum and T. Petrie, "Statistical inference for probabilistic function of finite state Markov chains," Ann. Math. Stat., vol. 37, no. 6, pp. 1554-1563, 1966.
    • (1966) Ann. Math. Stat. , vol.37 , Issue.6 , pp. 1554-1563
    • Baum, L.E.1    Petrie, T.2
  • 27
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov model and selected applications in speech recognition
    • Feb.
    • L. R. Rabiner, "A tutorial on hidden Markov model and selected applications in speech recognition," Proc. IEEE, vol. 77, pp. 257-286, Feb. 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 28
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Larid, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Roy. Stat. Soc. Ser. B, vol. 39, pp. 1-38, 1977.
    • (1977) J. Roy. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Larid, N.M.2    Rubin, D.B.3
  • 29
    • 0000353178 scopus 로고
    • A minimization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A minimization technique occurring in the statistical analysis of probabilistic functions of Markov chains," Ann. Math. Statist., vol. 41, pp. 164-171, 1970.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 30
    • 0022691022 scopus 로고
    • Maximum likelihood estimation for multivariate mixture observations of Markov chains
    • Mar.
    • B. H. Juang, S. E. Levinson, and M. M. Sondhi, "Maximum likelihood estimation for multivariate mixture observations of Markov chains," IEEE Trans. Inform. Theory, vol. IT-32, pp. 307-309, Mar. 1986.
    • (1986) IEEE Trans. Inform. Theory , vol.IT-32 , pp. 307-309
    • Juang, B.H.1    Levinson, S.E.2    Sondhi, M.M.3
  • 31
    • 0022712081 scopus 로고
    • A segmental k-means training procedure for connected word recognition
    • L. R. Rabiner, J. G. Wilpon, and B. H. Juang, "A segmental k-means training procedure for connected word recognition," AT&T Tech. J., vol. 65, no. 3, pp. 21-32, 1986.
    • (1986) AT&T Tech. J. , vol.65 , Issue.3 , pp. 21-32
    • Rabiner, L.R.1    Wilpon, J.G.2    Juang, B.H.3
  • 32
    • 0001373629 scopus 로고
    • Links between Markov models and multilayer perceptions
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • H. Bourlard and C. J. Wellekens, "Links between Markov models and multilayer perceptions," in Advances in Neural Information Processing Systems I, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 502-510.
    • (1989) Advances in Neural Information Processing Systems I , pp. 502-510
    • Bourlard, H.1    Wellekens, C.J.2
  • 34
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • Mar.
    • A. J. Robinson, "An application of recurrent nets to phone probability estimation," IEEE Trans. Neural Networks, vol. 5, pp. 298-305, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 298-305
    • Robinson, A.J.1
  • 36
    • 0344509344 scopus 로고    scopus 로고
    • Phoneme probability estimation with dynamic sparsely connected artificial neural networks
    • N. Ström, "Phoneme probability estimation with dynamic sparsely connected artificial neural networks," Free Speech J., vol. 1, no. 5, 1997.
    • (1997) Free Speech J. , vol.1 , Issue.5
    • Ström, N.1
  • 37
    • 0025385598 scopus 로고
    • Alpha-nets: A recurrent 'Neural' network architecture with a hidden Markov model interpretation
    • J. S. Bridle, "Alpha-nets: A recurrent 'Neural' network architecture with a hidden Markov model interpretation," Speech Commun., vol. 9, no. 1, pp. 83-92, 1990.
    • (1990) Speech Commun. , vol.9 , Issue.1 , pp. 83-92
    • Bridle, J.S.1
  • 38
    • 0004121079 scopus 로고
    • Serial order: A parallel distributed processing approach
    • Institute for Cognitive Science, University of California, San Diego, Tech. Rep. 8604
    • M. I. Jordan, "Serial order: A parallel distributed processing approach," Institute for Cognitive Science, University of California, San Diego, Tech. Rep. 8604, 1986.
    • (1986)
    • Jordan, M.I.1
  • 39
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.