메뉴 건너뛰기




Volumn 29, Issue 1, 1999, Pages 60-72

A log-linearized Gaussian mixture network and its application to EEG pattern classification

Author keywords

Electroencephalography; Feedforward neural networks; Pattern classification; Recurrent nerual networks

Indexed keywords


EID: 0002412982     PISSN: 10946977     EISSN: None     Source Type: Journal    
DOI: 10.1109/5326.740670     Document Type: Article
Times cited : (109)

References (19)
  • 1
    • 0027158486 scopus 로고
    • A neural network for event-related potential diagnosis
    • F. Y. Wu, J. D. Slater, L. S. Honih, and R. E. Ramsay, A neural network for event-related potential diagnosis, Comput. Biol. Machine, vol. 23, no. 3, pp. 251-264, 1993.
    • (1993) Comput. Biol. Machine , vol.23 , Issue.3 , pp. 251-264
    • Wu Y, F.1    Slater, J.D.2    Honih, L.S.3    Ramsay, R.E.4
  • 2
    • 0027514082 scopus 로고
    • Neural network model: Application to automatic analysis of human sleep
    • N. Schaltenbrand, R. Lengelle, and J. P. Macher, Neural network model: Application to automatic analysis of human sleep, Comput. Biomed. Res., vol. 26, no. 2, pp. 157-171, 1993.
    • (1993) Comput. Biomed. Res. , vol.26 , Issue.2 , pp. 157-171
    • Schaltenbrand, N.1    Lengelle, R.2    Macher, J.P.3
  • 3
    • 0028397694 scopus 로고
    • Neural network based classification of nonaveraged event-related EEG responses
    • M. Peltoranta and G. Pfurtscheller, Neural network based classification of nonaveraged event-related EEG responses, Med. Biol. Eng. Comput., vol. 32, no. 2, pp. 189-196, 1994.
    • (1994) Med. Biol. Eng. Comput. , vol.32 , Issue.2 , pp. 189-196
    • Peltoranta, M.1    Pfurtscheller, G.2
  • 5
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • S. F. Fogelman and J. Hault, Eds. New York: Springer-Verlag
    • J. S. Bridle, Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition, Neurocomputing: Algorithms, Architectures, and Applications, S. F. Fogelman and J. Hault, Eds. New York: Springer-Verlag, 1989, pp. 227-236.
    • (1989) Neurocomputing: Algorithms, Architectures, and Applications , pp. 227-236
    • Bridle, J.S.1
  • 6
    • 0026254768 scopus 로고
    • A general regression neural network
    • Nov.
    • D. F. Specht, A general regression neural network, IEEE Trans. Neural Networks, vol. 2, pp. 568-576, Nov. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 7
    • 5944224642 scopus 로고
    • Estimation of probability density function and a posteriori probability by neural networks, and vowel recognition
    • (in Japanese).
    • S. Nakagawa and Y. Ono, Estimation of probability density function and a posteriori probability by neural networks, and vowel recognition, Trans. IEICE Jpn., vol. J76-D-II, no. 6, pp. 1081-1089, 1993 (in Japanese).
    • (1993) Trans. IEICE Jpn. , vol.J76-D-II , Issue.6 , pp. 1081-1089
    • Nakagawa, S.1    Ono, Y.2
  • 8
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by semiparametric estimation of probability density functions
    • May
    • H. G. C. Trå;vén, A neural network approach to statistical pattern classification by semiparametric estimation of probability density functions, IEEE Trans. Neural Networks, vol. 2, pp. 366-377, May 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 366-377
    • Trå, H.G.C.1
  • 9
    • 0025957944 scopus 로고
    • Maximum likelihood neural networks for sensor fusion and adaptive classification
    • L. I. Perlovsky and M. M. McManus, Maximum likelihood neural networks for sensor fusion and adaptive classification, Neural Networks, vol. 4, pp. 89-102, 1991.
    • (1991) Neural Networks , vol.4 , pp. 89-102
    • Perlovsky, L.I.1    McManus, M.M.2
  • 10
    • 0001117567 scopus 로고
    • Motion discrimination method from EMG signals using statistically structured neural networks
    • (in Japanese).
    • T. Tsuji, D. Mori, and T. Ito, Motion discrimination method from EMG signals using statistically structured neural networks, Trans. IEE Jpn., vol. 112-C, no. 8, pp. 465-473, 1992 (in Japanese).
    • (1992) Trans. IEE Jpn. , Issue.8 , pp. 465-473
    • Tsuji, T.1    Mori, D.2    Ito, T.3
  • 11
    • 0027872164 scopus 로고    scopus 로고
    • Self-organization of Gaussian mixture model for learning class pdfs in pattern classification
    • S. Lee and S. Shimoji, Self-organization of Gaussian mixture model for learning class pdfs in pattern classification, in Proc. IEEE Int. Joint Conf. Neural Networks 1993, vol. III, pp. 2492-2495.
    • Proc. IEEE Int. Joint Conf. Neural Networks 1993 , vol.3 , pp. 2492-2495
    • Lee S1    Shimoji, S.2
  • 12
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks
    • Sept.
    • R. L. Streit and T. E. Luginbuhl, Maximum likelihood training of probabilistic neural networks, IEEE Trans. Neural Networks, vol. 5, pp. 764-783, Sept. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 764-783
    • Streit, R.L.1    Luginbuhl, T.E.2
  • 14
    • 0001414179 scopus 로고
    • Generalized linear models
    • J. A. Neider and W. M. Wedderburn, Generalized linear models, J. R. Stat. Soc. A, vol. 135, part 3, pp. 370-384, 1972.
    • (1972) J. R. Stat. Soc. a , vol.135 , Issue.PART 3 , pp. 370-384
    • Neider, J.A.1    Wedderburn, W.M.2
  • 16
    • 0029463041 scopus 로고    scopus 로고
    • Pattern classification of EEG signals using a log-linearized Gaussian mixture neural networks
    • O. Fukuda, T. Tsuji, and M. Kaneko, Pattern classification of EEG signals using a log-linearized Gaussian mixture neural networks, in Proc. IEEE Int. Conf. Neural Networks 1995, vol. V, pp. 2479-2484.
    • Proc. IEEE Int. Conf. Neural Networks 1995 , vol.5 , pp. 2479-2484
    • Fukuda, O.1    Tsuji, T.2    Kaneko, M.3
  • 17
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • J. H. Wolfe, Pattern clustering by multivariate mixture analysis, Multivariate Behav. Res., vol. 5, pp. 329-350, 1970.
    • (1970) Multivariate Behav. Res. , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 18
    • 33645525898 scopus 로고
    • Terminal attractors for addressable memory in neural networks
    • M. Zak, Terminal attractors for addressable memory in neural networks, Phys. Lett. A, vol. 133, pp. 218-222, 1988.
    • (1988) Phys. Lett. a , vol.133 , pp. 218-222
    • Zak, M.1
  • 19
    • 0028498606 scopus 로고
    • Synthetic approach to optimal filtering
    • Sept.
    • J. T. H. Lo, Synthetic approach to optimal filtering, IEEE Trans. Neural Networks, vol. 5, pp. 803-811, Sept. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 803-811
    • Lo, J.T.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.