메뉴 건너뛰기




Volumn 4, Issue 1, 2003, Pages 148-154

An approach to inferring transcriptional regulation among genes from large-scale expression data

Author keywords

Clustering reverse engineering; DNA microarrays; Gene expression; Genetic networks; SOTA; Time course

Indexed keywords

BIOLOGY; CONFERENCE PAPER; DATA BASE; DNA MICROARRAY; EXPERIMENT; GENE EXPRESSION; GENE INTERACTION; MEDICAL RESEARCH; NONHUMAN; PRIORITY JOURNAL; TECHNIQUE; TIME; TRANSCRIPTION REGULATION;

EID: 0037295046     PISSN: 15316912     EISSN: None     Source Type: Journal    
DOI: 10.1002/cfg.237     Document Type: Conference Paper
Times cited : (9)

References (28)
  • 1
    • 0030848624 scopus 로고    scopus 로고
    • A test case of correlation metric construction of a reaction pathway from measurements
    • Arkin A, Shen P, Ross J. 1997. A test case of correlation metric construction of a reaction pathway from measurements. Science 277: 1275-1279.
    • (1997) Science , vol.277 , pp. 1275-1279
    • Arkin, A.1    Shen, P.2    Ross, J.3
  • 2
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Ashburner M, Ball CA, Blake A, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genet 25: 25-29.
    • (2000) Nature Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, A.3
  • 3
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi AL, Albert R. 1999. Emergence of scaling in random networks. Science 286: 509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 4
    • 25944431986 scopus 로고    scopus 로고
    • Controlling the false discovery rate in behavior genetics research
    • (available from)
    • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 1999. Controlling the false discovery rate in behavior genetics research (available from: http://www.math.tau.ac.il/~ybenja/).
    • (1999)
    • Benjamini, Y.1    Drai, D.2    Elmer, G.3    Kafkafi, N.4    Golani, I.5
  • 5
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Ann Statist 29(4): 1165-1188.
    • (2001) Ann. Statist. , vol.29 , Issue.4 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 6
    • 0032413411 scopus 로고    scopus 로고
    • Predicting gene regulatory elements in silico on a genomic scale
    • Brazma A, Jonassen I, Vilo J, Ukkonen E. 1998. Predicting gene regulatory elements in silico on a genomic scale. Genome Res 8: 1202-1215.
    • (1998) Genome Res. , vol.8 , pp. 1202-1215
    • Brazma, A.1    Jonassen, I.2    Vilo, J.3    Ukkonen, E.4
  • 7
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'haeseleer P, Liang S, Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 8
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'haeseleer P, Wen X, Furhman S, Somogyi R. 1999. Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 4: 41-52.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 41-52
    • D'haeseleer, P.1    Wen, X.2    Furhman, S.3    Somogyi, R.4
  • 9
    • 0003477662 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Technical Report No. 110, Division of Biostatistics, University of California at Berkeley, CA
    • Dudoit S, Shaffer JP, Boldrick JC. 2002. Multiple hypothesis testing in microarray experiments. Technical Report No. 110, Division of Biostatistics, University of California at Berkeley, CA.
    • (2002)
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 10
    • 0026311694 scopus 로고
    • Statistical data analysis in the computer age
    • Efron B, Tibsirani R. 1991. Statistical data analysis in the computer age. Science 253: 390-395.
    • (1991) Science , vol.253 , pp. 390-395
    • Efron, B.1    Tibsirani, R.2
  • 12
    • 0034676457 scopus 로고    scopus 로고
    • Functional genomic analysis of C. elegans chromosome I by systematic RNA interference
    • Fraser AG, Kamath RS, Zipperlen P, et al. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325-330.
    • (2000) Nature , vol.408 , pp. 325-330
    • Fraser, A.G.1    Kamath, R.S.2    Zipperlen, P.3
  • 14
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J, Valencia A, Dopazo J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17: 126-136.
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 15
    • 0032567081 scopus 로고    scopus 로고
    • Dissecting the regulatory circuitry of a eukaryotic genome
    • Holstege FC, Jennings EG, Wyrick JJ, et al. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717-728.
    • (1998) Cell , vol.95 , pp. 717-728
    • Holstege, F.C.1    Jennings, E.G.2    Wyrick, J.J.3
  • 16
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes TR, Marton MJ, Jones AR, et al. 2000. Functional discovery via a compendium of expression profiles. Cell 102: 109-126.
    • (2000) Cell , vol.102 , pp. 109-126
    • Hughes, T.R.1    Marton, M.J.2    Jones, A.R.3
  • 17
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T, Chiba T, Ozawa R, et al. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569-4574.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3
  • 18
    • 0036583328 scopus 로고    scopus 로고
    • Statistical methods for the analysis of time course gene expression data
    • Li H, Luan Y, Hong F, Li Y. 2002. Statistical methods for the analysis of time course gene expression data. Front Biosci 7: 90-98.
    • (2002) Front Biosci. , vol.7 , pp. 90-98
    • Li, H.1    Luan, Y.2    Hong, F.3    Li, Y.4
  • 19
    • 84898940253 scopus 로고    scopus 로고
    • From co-expression to co-regulation: An approach to inferring transcriptional regulation among gene classes from large-scale expression data
    • Solla SA, Leen TK, Muller KR (eds). MIT Press: Cambridge, MA, USA
    • Mjolsness E, Mann T, Castaño, Wold B. 2000. From co-expression to co-regulation: an approach to inferring transcriptional regulation among gene classes from large-scale expression data. In Advances in Neural Information Processing Systems, vol 12, Solla SA, Leen TK, Muller KR (eds). MIT Press: Cambridge, MA, USA. 928-934.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 928-934
    • Mjolsness, E.1    Mann, T.2    Castaño, A.3    Wold, B.4
  • 20
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D, Regev A, Elidan G, Friedman N. 2001. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(suppl 1): S215-S224.
    • (2001) Bioinformatics , vol.17 , Issue.1 SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 21
    • 0002054202 scopus 로고    scopus 로고
    • Modelling the complexity of genetic networks: Understanding multigene and pleiotropic regulation
    • Somogyi R, Shiegoski CA. 1996. Modelling the complexity of genetic networks: understanding multigene and pleiotropic regulation. Complexity 1: 45-63.
    • (1996) Complexity , vol.1 , pp. 45-63
    • Somogyi, R.1    Shiegoski, C.A.2
  • 23
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling
    • Toh H, Horimoto K. 2002. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modelling. Bioinformatics 18: 287-297.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 24
    • 0034029892 scopus 로고    scopus 로고
    • Robustness against mutations in genetic networks of yeast
    • Wagner A. 2000. Robustness against mutations in genetic networks of yeast. Nature Genet 24: 355-361.
    • (2000) Nature Genet. , vol.24 , pp. 355-361
    • Wagner, A.1
  • 25
    • 0036177681 scopus 로고    scopus 로고
    • Estimating coarse gene network structure from large-scale gene perturbation data
    • Wagner A. 2002. Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res 12: 309-315.
    • (2002) Genome Res. , vol.12 , pp. 309-315
    • Wagner, A.1
  • 26
    • 0032617396 scopus 로고    scopus 로고
    • Modelling regulatory networks with weight matrices
    • Weaver C, Workman C, Stormo G. 1999. Modelling regulatory networks with weight matrices. Pac Symp Biocomput 4: 112-123.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 112-123
    • Weaver, C.1    Workman, C.2    Stormo, G.3
  • 28
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A, et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.