-
4
-
-
0003978311
-
-
edited by D. Bimberg, M. Grundmann, and N. Ledentsov, (Wiley, Chichester)
-
Quantum Dot Heterostructures edited by D. Bimberg, M. Grundmann, and N. Ledentsov, (Wiley, Chichester, 1998).
-
(1998)
Quantum Dot Heterostructures
-
-
-
5
-
-
0031575290
-
-
D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, and P.L. McEuen, Nature (London) 389, 699 (1997).
-
(1997)
Nature (London)
, vol.389
, pp. 699
-
-
Klein, D.L.1
Roth, R.2
Lim, A.K.L.3
Alivisatos, A.P.4
McEuen, P.L.5
-
6
-
-
0346332115
-
-
S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3613
-
-
Tarucha, S.1
Austing, D.G.2
Honda, T.3
Van der Hage, R.J.4
Kouwenhoven, L.P.5
-
7
-
-
0001533715
-
-
P.G. Eliseev, H. Li, A. Stintz, G.T. Liu, T.C. Newell, K.J. Malloy, and L.F. Lester, Appl. Phys. Lett. 77, 262 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 262
-
-
Eliseev, P.G.1
Li, H.2
Stintz, A.3
Liu, G.T.4
Newell, T.C.5
Malloy, K.J.6
Lester, L.F.7
-
8
-
-
3643120476
-
-
H. Drexler, L. Leonard, W. Hansen, J.P. Kotthous, and P.M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2252
-
-
Drexler, H.1
Leonard, L.2
Hansen, W.3
Kotthous, J.P.4
Petroff, P.M.5
-
9
-
-
0033579345
-
-
T. Lundstrom, W. Schoenfeld, H. Lee, and P.M. Petroff, Science 286, 2312 (1999).
-
(1999)
Science
, vol.286
, pp. 2312
-
-
Lundstrom, T.1
Schoenfeld, W.2
Lee, H.3
Petroff, P.M.4
-
10
-
-
21544478481
-
-
S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, Appl. Phys. Lett. 73, 963 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 963
-
-
Kim, S.1
Mohseni, H.2
Erdtmann, M.3
Michel, E.4
Jelen, C.5
Razeghi, M.6
-
11
-
-
0034704241
-
-
P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Lmamoglu, Science 290, 2282 (2000).
-
(2000)
Science
, vol.290
, pp. 2282
-
-
Michler, P.1
Kiraz, A.2
Becher, C.3
Schoenfeld, W.V.4
Petroff, P.M.5
Zhang, L.6
Hu, E.7
Lmamoglu, A.8
-
12
-
-
0034504908
-
-
E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett. 85, 5647 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 5647
-
-
Biolatti, E.1
Iotti, R.C.2
Zanardi, P.3
Rossi, F.4
-
15
-
-
0037018057
-
-
A. Puzder, A.J. Williamson, J.C. Grossman, and G. Galli, Phys. Rev. Lett. 88, 97401 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 97401
-
-
Puzder, A.1
Williamson, A.J.2
Grossman, J.C.3
Galli, G.4
-
22
-
-
0035884472
-
-
Y.M. Niquet, C. Delerue, M. Lannoo, and G. Allan, Phys. Rev. B 64, 113305 (2001).
-
(2001)
Phys. Rev. B
, vol.64
, pp. 113305
-
-
Niquet, Y.M.1
Delerue, C.2
Lannoo, M.3
Allan, G.4
-
23
-
-
0034906805
-
-
S. Lee, L. Jönsson, J.W. Wilkins, G.W. Bryant, and G. Klimeck, Phys. Rev. B 63, 195318 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 195318
-
-
Lee, S.1
Jönsson, L.2
Wilkins, J.W.3
Bryant, G.W.4
Klimeck, G.5
-
24
-
-
0000034035
-
-
S. Fafard, M. Spanner, J.P. McCaffrey, and Z.R. Wasilewski, Appl. Phys. Lett. 76, 2268 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.76
, pp. 2268
-
-
Fafard, S.1
Spanner, M.2
McCaffrey, J.P.3
Wasilewski, Z.R.4
-
26
-
-
0000335647
-
-
U. Banin, C.J. Lee, A.A. Guzelian, A.V. Kadavanich, A.P. Alivisatos, W. Jaskolski, G.W. Bryant, A.L. Efros, and M. Rosen, J. Chem. Phys. 109, 2306 (1998).
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 2306
-
-
Banin, U.1
Lee, C.J.2
Guzelian, A.A.3
Kadavanich, A.V.4
Alivisatos, A.P.5
Jaskolski, W.6
Bryant, G.W.7
Efros, A.L.8
Rosen, M.9
-
27
-
-
0033526997
-
-
U. Banin, Y. Cao, D. Katz, and O. Millo, Nature (London) 400, 542 (1999).
-
(1999)
Nature (London)
, vol.400
, pp. 542
-
-
Banin, U.1
Cao, Y.2
Katz, D.3
Millo, O.4
-
29
-
-
0001059737
-
-
J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 6493
-
-
Jancu, J.-M.1
Scholz, R.2
Beltram, F.3
Bassani, F.4
-
31
-
-
33646620367
-
-
note
-
The energy of the hole level is the negative of the corresponding single-particle level. The hole wave function is the conjugate of the single-particle wave function, following the second quantization model in which a hole state is a state resulting from an annihilation operator applied to an occupied single-particle level. In addition, the spin of hole state is the opposite of that of the single-particle level.
-
-
-
-
34
-
-
33646622407
-
-
edited by P. M. Fauchet, C. C. Tsai, L. T. Canham, I. Shimizu, and Y. Aoyagi, Mater. Res. Soc. Symp. Proc. No. 283 (Materials Research Society, Pittsburgh)
-
R. Tsu, L. Ioriatti, J. Harvey, H. Shen, and R. Lux, in Microcrystalline Semiconductors: Materials Science and Devices, edited by P. M. Fauchet, C. C. Tsai, L. T. Canham, I. Shimizu, and Y. Aoyagi, Mater. Res. Soc. Symp. Proc. No. 283 (Materials Research Society, Pittsburgh, 1993).
-
(1993)
Microcrystalline Semiconductors: Materials Science and Devices
-
-
Tsu, R.1
Ioriatti, L.2
Harvey, J.3
Shen, H.4
Lux, R.5
-
35
-
-
0004161838
-
-
(Cambridge Unversity Press, Cambridge, England), 2nd ed.
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge Unversity Press, Cambridge, England, 1999), 2nd ed.
-
(1999)
Numerical Recipes in C: The Art of Scientific Computing
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
36
-
-
0001458623
-
-
L. Banyai, P. Gilliot, Y.Z. Hu, and S.W. Koch, Phys. Rev. B 45, 14 136 (1992).
-
(1992)
Phys. Rev. B
, vol.45
, pp. 14136
-
-
Banyai, L.1
Gilliot, P.2
Hu, Y.Z.3
Koch, S.W.4
-
37
-
-
33646600818
-
-
note
-
In the STM experiment, the STM tips are retracted from the nanocrystal far enough to make most of the bias voltage drop across a tip-nanocrystal junction (J1) (Ref. 27). Therefore we approximate the voltage drop across J1 with the total bias voltage, that is the upper limit of the voltage drop across J1.
-
-
-
-
38
-
-
33646612975
-
-
note
-
In the PLE experiment, its size measurement with transmission electron microscopy (TEM) may underestimate a nanocrystal radius by approximately 2.5 Å, because TEM is insensitive to a nonperiodic layer near the nanocrystal surface (Ref. 26). In the STM experiment, STM topographic images may overestimate a nanocrystal size due to the tip-nanocrystal convolution effect (Ref. 27).
-
-
-
-
39
-
-
0035796759
-
-
D. Katz, O. Millo, S.-H. Kan, and U. Banin, Appl. Phys. Lett. 79, 117 (2001).
-
(2001)
Appl. Phys. Lett.
, vol.79
, pp. 117
-
-
Katz, D.1
Millo, O.2
Kan, S.-H.3
Banin, U.4
-
40
-
-
33646604723
-
-
Katz, et al. (Ref. 39)
-
Katz, et al. (Ref. 39) estimate that the ratio of the voltage drop across J1 to that across J2 is approximately 10 (see the inset of Fig. 1 for the definitions of J1 and J2). This estimation is based on theoretical tunneling simulations combined with pseudopotential calculations (Ref. 18) for single-particle levels, but not based on experimental measurements of, for instance, the capacitances and resistances of J1 and J2. Therefore approximating the voltage drop across J1 with the total bias voltage has a few tens of percent of uncertainties.
-
-
-
-
42
-
-
0000534563
-
-
F. Liu, Phys. Rev. B 52, 10 677 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 10677
-
-
Liu, F.1
-
44
-
-
33646606706
-
-
Http://www.caam.rice.edu/software/ARPACK/. Use of this software does not constitute an endorsement or certification by NIST.
-
-
-
-
45
-
-
33646618771
-
-
Http://www.physics.ohio-state.edu/ohmms/. Use of this software does not constitute an endorsement or certification by NIST.
-
-
-
-
46
-
-
33646604534
-
-
note
-
Use of this product does not constitute an endorsement or certification by NIST.
-
-
-
|