-
1
-
-
0026931265
-
-
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Nature 1992, 359, 710.
-
(1992)
Nature
, vol.359
, pp. 710
-
-
Kresge, C.T.1
Leonowicz, M.E.2
Roth, W.J.3
Vartuli, J.C.4
Beck, J.S.5
-
2
-
-
0012247651
-
-
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.-W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. J. Am. Chem. Soc. 1992, 114, 10834.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10834
-
-
Beck, J.S.1
Vartuli, J.C.2
Roth, W.J.3
Leonowicz, M.E.4
Kresge, C.T.5
Schmitt, K.D.6
Chu, C.T.-W.7
Olson, D.H.8
Sheppard, E.W.9
McCullen, S.B.10
Higgins, J.B.11
Schlenker, J.L.12
-
3
-
-
0034516186
-
-
Wu, J.; Liu, X.; Tolbert, S.H. J. Phys. Chem. B 2000, 104, 11837.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 11837
-
-
Wu, J.1
Liu, X.2
Tolbert, S.H.3
-
4
-
-
0002184504
-
-
Wu, J.; Abu-Omar, M.M.; Tolbert, S.H. Nanoletters 2001, 1, 27.
-
(2001)
Nanoletters
, vol.1
, pp. 27
-
-
Wu, J.1
Abu-Omar, M.M.2
Tolbert, S.H.3
-
5
-
-
20644457106
-
-
Gross, A.F.; Ruiz, E.J.; Tolbert, S.H. J. Phys. Chem. B 2000, 104, 5448.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 5448
-
-
Gross, A.F.1
Ruiz, E.J.2
Tolbert, S.H.3
-
6
-
-
0034778256
-
-
Gross, A.F.; Le, V.H.; Kirsch, B.L.; Riley, A.E.; Tolbert, S.H. Chem. Mater. 2001, 13, 3571.
-
(2001)
Chem. Mater.
, vol.13
, pp. 3571
-
-
Gross, A.F.1
Le, V.H.2
Kirsch, B.L.3
Riley, A.E.4
Tolbert, S.H.5
-
7
-
-
0037051964
-
-
Gross, A.F.; Le, V.H.; Kirsch, B.L.; Tolbert, S.H. J. Am. Chem. Soc. 2002, 124, 3713.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 3713
-
-
Gross, A.F.1
Le, V.H.2
Kirsch, B.L.3
Tolbert, S.H.4
-
8
-
-
0034845571
-
-
Tolbert, S.H.; Landry, C.C.; Stucky, G.D.; Chmelka, B.F.; Norby, P.; Hanson, J.C.; Monnier, A. Chem. Mater. 2001, 13, 2247.
-
(2001)
Chem. Mater.
, vol.13
, pp. 2247
-
-
Tolbert, S.H.1
Landry, C.C.2
Stucky, G.D.3
Chmelka, B.F.4
Norby, P.5
Hanson, J.C.6
Monnier, A.7
-
9
-
-
0035967671
-
-
Gross, A.F.; Le, V.H.; Kirsch; B.L.; Tolbert, S.H. Langmuir 2001, 17, 3496.
-
(2001)
Langmuir
, vol.17
, pp. 3496
-
-
Gross, A.F.1
Le, V.H.2
Kirsch3
, B.L.4
Tolbert, S.H.5
-
14
-
-
0011644183
-
-
note
-
At about 30 °C and 1 GPa, liquid water and ice VI can coexist. At higher temperatures and a pressure of 1 GPa, water exists only in the liquid phase. We ignore the possibility of ice inside the sample cell because the sample mixture is heated immediately after it is placed under pressure. In addition, for each sample, ruby fluorescence from flakes at various regions within the sample cell produced the same pressure, indicating a fluid environment.
-
-
-
-
16
-
-
0000550063
-
-
Forman, R.A.; Piermarini, G.J.; Barnett, J.D.; Block, S. Science 1972, 176, 284.
-
(1972)
Science
, vol.176
, pp. 284
-
-
Forman, R.A.1
Piermarini, G.J.2
Barnett, J.D.3
Block, S.4
-
17
-
-
0015567308
-
-
Barnett, J.D.; Block, S.; Piermarini, G.J. Rev. Sci. Instrum. 1973, 44, 1.
-
(1973)
Rev. Sci. Instrum.
, vol.44
, pp. 1
-
-
Barnett, J.D.1
Block, S.2
Piermarini, G.J.3
-
18
-
-
0011644927
-
-
note
-
Control experiments were performed to ensure that large changes in the applied pressure did not occur upon heating. Composites in water were heated in a DAC at a fixed pressure. As the temperature was increased, the external pressure was monitored using ruby fluorescence. On average, the total pressure change was small, ranging from insignificant values to less than 0.3 GPa at temperatures as high as 180 °C.
-
-
-
-
19
-
-
0001731618
-
-
Huo, Q.; Margolese, D.I.; Stucky, G.D. Chem. Mater. 1996, 8, 1147.
-
(1996)
Chem. Mater.
, vol.8
, pp. 1147
-
-
Huo, Q.1
Margolese, D.I.2
Stucky, G.D.3
-
20
-
-
0034614058
-
-
Impéror-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 11925
-
-
Impéror-Clerc, M.1
Davidson, P.2
Davidson, A.3
-
21
-
-
33748585507
-
-
Edler, K.J.; Reynolds, P.A.; White, J.W.; Cookson, D. J. Chem. Soc., Faraday Trans. 1997, 93, 199.
-
(1997)
J. Chem. Soc., Faraday Trans.
, vol.93
, pp. 199
-
-
Edler, K.J.1
Reynolds, P.A.2
White, J.W.3
Cookson, D.4
-
22
-
-
0001674267
-
-
Lindén, M.; Blanchard, J.; Schacht, S.; Schunk, S.A.; Schüth, F. Chem. Mater. 1999, 11, 3002.
-
(1999)
Chem. Mater.
, vol.11
, pp. 3002
-
-
Lindén, M.1
Blanchard, J.2
Schacht, S.3
Schunk, S.A.4
Schüth, F.5
-
23
-
-
0032091359
-
-
Schacht, S.; Janicke, M.; Schüth, F. Microporous Mesoporous Mater. 1998, 22, 485.
-
(1998)
Microporous Mesoporous Mater.
, vol.22
, pp. 485
-
-
Schacht, S.1
Janicke, M.2
Schüth, F.3
-
26
-
-
0031210966
-
-
Jendoubi, F.; Mgaidi, A.; el Maaoui, M. Can. J. Chem. Eng. 1997, 75, 721.
-
(1997)
Can. J. Chem. Eng.
, vol.75
, pp. 721
-
-
Jendoubi, F.1
Mgaidi, A.2
El Maaoui, M.3
-
30
-
-
0346786777
-
-
Ågren, P.; Lindén, M.; Rosenholm, J.B.; Schwarzenbacher, R.; Kriechbaun, M.; Amenitsch, H.; Laggner, P.; Blanchard, J.; Schüth, F. J. Phys. Chem. B 1999, 103, 5943.
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 5943
-
-
Ågren, P.1
Lindén, M.2
Rosenholm, J.B.3
Schwarzenbacher, R.4
Kriechbaun, M.5
Amenitsch, H.6
Laggner, P.7
Blanchard, J.8
Schüth, F.9
-
32
-
-
0021819099
-
-
Brostow, W.; Grindley, T.; Macip, M.A. Mater. Chem. Phys. 1985, 12, 37.
-
(1985)
Mater. Chem. Phys.
, vol.12
, pp. 37
-
-
Brostow, W.1
Grindley, T.2
Macip, M.A.3
-
33
-
-
0011647501
-
-
built under IRIX 6.2; Wave function Inc.: Irvine, CA
-
Spartan SGI, version 5.0.3 OpenGL (built under IRIX 6.2); Wave function Inc.: Irvine, CA, 1991-1997.
-
(1991)
Spartan SGI, version 5.0.3 OpenGL
-
-
-
35
-
-
0003910688
-
-
Pergamon: Oxford, U.K.
-
The c axis of a hexagonal honeycomb structure is generally considered to be the stiff direction. By calculating a volume compressibility from the cube of the linear change in the a-b direction, we are assuming that the compression along the pores is as large as compression across the pores. This is probably not the case, and thus, the calculated value marks an upper limit for the volume compressibility. (Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon: Oxford, U.K., 1988. Gibson, L.J. Mater. Sci. Eng. A 1989, 110, 1.).
-
(1988)
Cellular Solids: Structure and Properties
-
-
Gibson, L.J.1
Ashby, M.F.2
-
36
-
-
0024621086
-
-
The c axis of a hexagonal honeycomb structure is generally considered to be the stiff direction. By calculating a volume compressibility from the cube of the linear change in the a-b direction, we are assuming that the compression along the pores is as large as compression across the pores. This is probably not the case, and thus, the calculated value marks an upper limit for the volume compressibility. (Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Pergamon: Oxford, U.K., 1988. Gibson, L.J. Mater. Sci. Eng. A 1989, 110, 1.).
-
(1989)
Mater. Sci. Eng. A
, vol.110
, pp. 1
-
-
Gibson, L.J.1
-
37
-
-
0001285083
-
-
Bloor, D.M.; Gormally, J.; Wyn-Jones, E. Chem. Soc. Faraday Trans. 1984, 80, 1915.
-
(1984)
Chem. Soc. Faraday Trans.
, vol.80
, pp. 1915
-
-
Bloor, D.M.1
Gormally, J.2
Wyn-Jones, E.3
-
38
-
-
0019552995
-
-
We used a zero pressure bulk modulus of 37 GPa and a derivative with respect to pressure of -5.31 to calculate an average value of the bulk modulus for vitreous silica glass in the pressure range of 0-1 GPa. Kondo, K.-I.; Iio, S.; Sawaoka, A. J. Appl. Phys. 1981, 52, 2826.
-
(1981)
J. Appl. Phys.
, vol.52
, pp. 2826
-
-
Kondo, K.-I.1
Iio, S.2
Sawaoka, A.3
|