메뉴 건너뛰기




Volumn 26 I, Issue , 2002, Pages 27-43

Intelligent integrated plant operation system for Six Sigma

Author keywords

MAIC; Multivariate statistical process control; Six Sigma

Indexed keywords

INTELLIGENT CONTROL; MANAGEMENT INFORMATION SYSTEMS; STATISTICAL METHODS; STATISTICAL PROCESS CONTROL;

EID: 0036396213     PISSN: 13675788     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1367-5788(02)80008-6     Document Type: Article
Times cited : (52)

References (64)
  • 1
    • 0032118892 scopus 로고    scopus 로고
    • Bakshi, B. (1998). AIChE Journal, 44, 7, 1596-1610.
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.1
  • 3
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N., and McAvoy, T.J. (1990). Use of neural nets for dynamic modeling and control of chemical process systems, Computers Chem. Engng, 14(4/5), 573-583.
    • (1990) Computers Chem. Engng , vol.14 , Issue.4-5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 4
    • 0002525028 scopus 로고
    • Evolutionary operation: A method for increasing industrial productivity
    • Box, G.E.P. (1957). Evolutionary Operation: A Method for Increasing Industrial Productivity. Applied Statistics, 4, 3-23.
    • (1957) Applied Statistics , vol.4 , pp. 3-23
    • Box, G.E.P.1
  • 5
    • 79954475631 scopus 로고    scopus 로고
    • Hierarchical plant-wide monitoring and triangular representation based diagnosis
    • Cho, H.W., and Han, C. (1998). Hierarchical plant-wide monitoring and triangular representation based diagnosis, IFAC Conf. Section 1A.
    • (1998) IFAC Conf. Section 1A
    • Cho, H.W.1    Han, C.2
  • 6
    • 0010856493 scopus 로고    scopus 로고
    • Improved evolutionary operation based on D-optimal desing and response surface methodology
    • Chu, Y-H. and Han, C. (2001) "Improved Evolutionary Operation Based on D-Optimal Desing and Response Surface Methodology" submitted to JIChE Journal
    • (2001) JIChE Journal
    • Chu, Y.-H.1    Han, C.2
  • 7
    • 0028367289 scopus 로고
    • Application of feedforward neural networks and partial least squares regression for modelling kappa number in a continuous kamyr digester
    • Dayal, B., MacGregor, J. F., Taylor P. A., Kildaw, R., and Marcikic, S. (1994). Application of Feedforward Neural Networks and Partial Least Squares Regression for Modelling Kappa Number in a Continuous Kamyr Digester, Pulp and Paper Canada 95, 26-32.
    • (1994) Pulp and Paper Canada , vol.95 , pp. 26-32
    • Dayal, B.1    MacGregor, J.F.2    Taylor, P.A.3    Kildaw, R.4    Marcikic, S.5
  • 8
    • 0010795049 scopus 로고    scopus 로고
    • Emerging technologies and six sigma
    • April
    • Deshpande, P.B. (1998) Emerging technologies and Six Sigma, Hydrocarbon processing, April, 55-62.
    • (1998) Hydrocarbon Processing , pp. 55-62
    • Deshpande, P.B.1
  • 10
    • 0034621629 scopus 로고    scopus 로고
    • Multivariate analysis and optimization of process variable trajectories for batch processes
    • Duchesne, C., MacGregor, J.F. (2000). Multivariate analysis and optimization of process variable trajectories for batch processes. Chemom. Int. Lab. Sys., 51, 125-137.
    • (2000) Chemom. Int. Lab. Sys. , vol.51 , pp. 125-137
    • Duchesne, C.1    MacGregor, J.F.2
  • 11
    • 84952107777 scopus 로고
    • A simple baysian modification of D-optimal designs to reduce dependence on an assumed model
    • DuMouchel, W. and Jones, B. (1994) "A Simple Baysian Modification of D-Optimal Designs to Reduce Dependence on an Assumed Model", Technometrics, 36, 37
    • (1994) Technometrics , vol.36 , pp. 37
    • DuMouchel, W.1    Jones, B.2
  • 12
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical knowledge-based redundancy - a survey and some new results
    • Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical knowledge-based redundancy - a survey and some new results, AIChE J., 26, 459-474.
    • (1990) AIChE J. , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 14
    • 0010794255 scopus 로고
    • Evolutionary operation today - Some survey results and observations
    • Hahn, G.J., Dershowitz, A.F. (1974). Evolutionary operation today - some survey results and observations, Applied Statistics, 23, 214-218.
    • (1974) Applied Statistics , vol.23 , pp. 214-218
    • Hahn, G.J.1    Dershowitz, A.F.2
  • 18
    • 0029379924 scopus 로고
    • Modeling and control of distillation column using artificial neural networks
    • Himmelbalu, D.M. and MacMurray, J.C. (1995). Modeling and Control of Distillation column using artificial neural networks, Computers Chem. Engng, 19(10), 1077-1088.
    • (1995) Computers Chem. Engng , vol.19 , Issue.10 , pp. 1077-1088
    • Himmelbalu, D.M.1    MacMurray, J.C.2
  • 20
    • 0010865452 scopus 로고    scopus 로고
    • Honeywell
    • Honeywell (2001). LoopScout™, http://www.iac.honeywell.com.
    • (2001) LoopScout™
  • 21
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operation modes
    • Hwang, D.H. and C. Han (1999). "Real-time monitoring for a process with multiple operation modes", Control Engineering Practice, 7, 7, 891-902.
    • (1999) Control Engineering Practice , vol.7 , Issue.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 22
    • 0021468997 scopus 로고
    • Process fault detection based on modeling and estimation methods - a survey
    • Isermann, R. (1984). Process fault detection based on modeling and estimation methods - a survey, Automatica, 20, 387-404.
    • (1984) Automatica , vol.20 , pp. 387-404
    • Isermann, R.1
  • 23
    • 0032069959 scopus 로고    scopus 로고
    • Product design through multivariate statistical analysis of process data
    • Jackle, C.M., MacGregor, J.F. (1998). Product Design through Multivariate Statistical Analysis of Process Data, AIChE J., 44, 5, 1105-1118.
    • (1998) AIChE J. , vol.44 , Issue.5 , pp. 1105-1118
    • Jackle, C.M.1    MacGregor, J.F.2
  • 24
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano, M., Miyazaki, K., Hasebe, S., Hashimoto, I. (2000). Inferential control system of distillation compositions using dynamic partial least squares regression, J. Proc Cont, 10, 157-166.
    • (2000) J. Proc Cont , vol.10 , pp. 157-166
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 25
    • 0030676662 scopus 로고    scopus 로고
    • A fault detection and diagnosis module for oil production plants in offshore platforms
    • Kaszkurewicz, E., Bhaya, A., and Ebecken, N.F.F. (1997) A Fault Detection and Diagnosis Module for Oil Production Plants in Offshore Platforms, Expert Systems With Applications, 12 (2), 189-194.
    • (1997) Expert Systems with Applications , vol.12 , Issue.2 , pp. 189-194
    • Kaszkurewicz, E.1    Bhaya, A.2    Ebecken, N.F.F.3
  • 26
    • 0010864680 scopus 로고    scopus 로고
    • Next generation plant information systems
    • April
    • Kennedy, J.P. (1999). Next generation plant information systems, Hydrocarbon processing, April, 95-100.
    • (1999) Hydrocarbon Processing , pp. 95-100
    • Kennedy, J.P.1
  • 27
    • 0034661288 scopus 로고    scopus 로고
    • Real-time classification of petroleum products using near-infrared spectra
    • Kim, M., Y.-H. Lee and Han, C. (2000). Real-time classification of petroleum products using near-infrared spectra, Computers Chem. Engng, 24, 513-517.
    • (2000) Computers Chem. Engng , vol.24 , pp. 513-517
    • Kim, M.1    Lee, Y.-H.2    Han, C.3
  • 28
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component
    • Kosanovich, K.A., Dahs, K.S., Pivoso, M.J. (1996). Improved Process Understanding Using Multiway Principal Component, Ind. Eng. Chem. Res., 35, 138-146.
    • (1996) Ind. Eng. Chem. Res. , vol.35 , pp. 138-146
    • Kosanovich, K.A.1    Dahs, K.S.2    Pivoso, M.J.3
  • 30
    • 0029703047 scopus 로고    scopus 로고
    • Experiences with industrial applications on projection methods for multivariate statistical process control
    • Kourti, T., Lee, J., and MacGregor, J.F. (1996). Experiences with Industrial Applications on Projection Methods for Multivariate Statistical Process Control, Comput. Chem Engng 20 Suppl. S745-S750.
    • (1996) Comput. Chem Engng 20 Suppl.
    • Kourti, T.1    Lee, J.2    MacGregor, J.F.3
  • 31
    • 0029357005 scopus 로고    scopus 로고
    • Analysis, monitoring and fault diagnosis of batch processes using multi-block and multiway PLS
    • Kouti, T., Nomikos, P., and MacGregor, J.F. (1996). Analysis, Monitoring and Fault Diagnosis of Batch Processes Using Multi-block and Multiway PLS, J. Proc. Cont., 5, 277-284.
    • (1996) J. Proc. Cont. , vol.5 , pp. 277-284
    • Kouti, T.1    Nomikos, P.2    MacGregor, J.F.3
  • 32
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J., MacGregor, J.F. and Marlin, T.E. (1991). Multivariate statistical monitoring of process operating performance, Can. J. Chem. Engng. 69, 35-47.
    • (1991) Can. J. Chem. Engng. , vol.69 , pp. 35-47
    • Kresta, J.1    MacGregor, J.F.2    Marlin, T.E.3
  • 33
    • 4244166542 scopus 로고    scopus 로고
    • RMBatch: Intelligent real-time monitoring and diagnosis system for batch processes
    • Lee, Y.-H., Lee D.-Y., Han C. (1999) RMBatch: Intelligent Real-time Monitoring and Diagnosis System for Batch Processes, Comput. Chem. Engng Suppl. S699-S702.
    • (1999) Comput. Chem. Engng Suppl.
    • Lee, Y.-H.1    Lee, D.-Y.2    Han, C.3
  • 34
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Li, W., H. Yue, S. Valle-Certantes, and Qin, S.J. (2000). Recursive PCA for adaptive process monitoring, J. Proc. Cont., 10, 47-486.
    • (2000) J. Proc. Cont. , vol.10 , pp. 47-486
    • Li, W.1    Yue, H.2    Valle-Certantes, S.3    Qin, S.J.4
  • 38
    • 0032657437 scopus 로고    scopus 로고
    • Manufacturing performance enhancement through multivariate statistical process control
    • Martin, E.B., A.J. Morris and C. Kiparissides. (1999). Manufacturing performance enhancement through multivariate statistical process control, Annual Reviews in Control, 23, 35-44.
    • (1999) Annual Reviews in Control , vol.23 , pp. 35-44
    • Martin, E.B.1    Morris, A.J.2    Kiparissides, C.3
  • 40
    • 0016061785 scopus 로고
    • An algorithm for the construction of D-optimal experimental designs
    • Mitchell, T. J. (1974) "An Algorithm for the Construction of D-Optimal Experimental Designs", Technometrics, 16, 203
    • (1974) Technometrics , vol.16 , pp. 203
    • Mitchell, T.J.1
  • 41
    • 0022936946 scopus 로고
    • Expert systems in on-line process control
    • Asilomer, USA
    • Moor, R. L. and Kramer, M. A. (1986). Expert systems in on-line process control Chemical Process Control III, Asilomer, USA, 839-867.
    • (1986) Chemical Process Control III , pp. 839-867
    • Moor, R.L.1    Kramer, M.A.2
  • 42
    • 0032179394 scopus 로고    scopus 로고
    • Multivariate statistical analysis of an emulsion batch process
    • Neogi, D., and Schlags, C.E. (1998). Multivariate Statistical Analysis of an Emulsion Batch Process, Ind. Eng. Chem. Res. 37, 3971-3979.
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 3971-3979
    • Neogi, D.1    Schlags, C.E.2
  • 43
    • 0028483476 scopus 로고
    • Monitoring of batch processes using multi-way principal component analysis
    • Nomikos, P. and Macgregor, J.F. (1994). Monitoring of Batch Processes using Multi-way Principal Component Analysis, AIChE J. 40, 1361-1375.
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    Macgregor, J.F.2
  • 44
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos, P. and Macgregor, J.F. (1995). Multivariate SPC charts for Monitoring Batch processes, Technometrics, 37, 41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    Macgregor, J.F.2
  • 45
    • 0033904448 scopus 로고    scopus 로고
    • Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring
    • Norvilas, A., Neigiz, A. DeCicco, J., Cinar, A. (2000). Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring, J. Proc. Cont., 10, 341-350.
    • (2000) J. Proc. Cont. , vol.10 , pp. 341-350
    • Norvilas, A.1    Neigiz, A.2    DeCicco, J.3    Cinar, A.4
  • 46
    • 0010868515 scopus 로고    scopus 로고
    • Sensor validation under feedback control of MPC
    • Nugroho, Toto and S.J. Qin (2001). Sensor validation under feedback control of MPC, Cont. Eng. Practice, 9, 877-888.
    • (2001) Cont. Eng. Practice , vol.9 , pp. 877-888
    • Nugroho, T.1    Qin, S.J.2
  • 47
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin, S.J. and McAvoy, T.J. (1992). Nonlinear PLS Modeling Using Neural Networks, Comput. Chem. Engng. 16(4) 379-391.
    • (1992) Comput. Chem. Engng. , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 48
    • 0001212550 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors in dynamic proceses with maximized sensitivity
    • Qin, S.J. and W. Li (2001). Detection and identification of faulty sensors in dynamic proceses with maximized sensitivity, AIChE Journal, 47, 1581-1593.
    • (2001) AIChE Journal , vol.47 , pp. 1581-1593
    • Qin, S.J.1    Li, W.2
  • 49
    • 0344222193 scopus 로고    scopus 로고
    • Adaptive batch monitoring using hierarchical PCA
    • Rännar, S., MacGregor, J.F., and Wold, S. (1998)., Adaptive Batch Monitoring Using Hierarchical PCA, Chem. Int. Lab. Sys. 41, 73-81.
    • (1998) Chem. Int. Lab. Sys. , vol.41 , pp. 73-81
    • Rännar, S.1    MacGregor, J.F.2    Wold, S.3
  • 50
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russel, E., Ching L.H., Braatz, R.D. (2000). Fault Detection in industrial processes using canonical variate analysis and dynamic principal component analysis, Chem. Int. Lab. Sys. 51, 81-93.
    • (2000) Chem. Int. Lab. Sys. , vol.51 , pp. 81-93
    • Russel, E.1    Ching, L.H.2    Braatz, R.D.3
  • 51
    • 0010788529 scopus 로고    scopus 로고
    • Remove the hidden cost of poor quality
    • Oct. 10
    • Samsung SDI. (2000). Remove the hidden cost of poor quality, Hankyung Business Daily, Oct. 10.
    • (2000) Hankyung Business Daily
    • Samsung, S.D.I.1
  • 53
    • 0010856806 scopus 로고
    • Analysis of industrial FCCU data using PCA and PLS
    • M. Eng. Thesis, McMaster University, Hamilton, ON, Canada
    • Slama, C.F. (1991). Analysis of Industrial FCCU data using PCA and PLS, M. Eng. Thesis, McMaster University, Hamilton, ON, Canada.
    • (1991)
    • Slama, C.F.1
  • 56
    • 0033404122 scopus 로고    scopus 로고
    • Monitoring a PVC batch process with multivariate statistical control charts
    • Tates, A.A., Louwerse, D.J., and Smilde, A.K. (1999). Monitoring a PVC Batch Process with Multivariate Statistical Control Charts. Ind. Eng. Chem. Res., 38, 4769-4776.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4769-4776
    • Tates, A.A.1    Louwerse, D.J.2    Smilde, A.K.3
  • 57
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • Vedam, H., and Venkatasubramanian, V. (1999). PCA-SDG based process monitoring and fault diagnosis, Control Engng Practice, 7, 903-917.
    • (1999) Control Engng Practice , vol.7 , pp. 903-917
    • Vedam, H.1    Venkatasubramanian, V.2
  • 58
    • 0024905756 scopus 로고
    • A neural network methodology for process fault diagnosis
    • Venkatasubramanian, V., and Chan, K. (1989). A neural network methodology for process fault diagnosis, AIChE J, 35(12), 1993-2002.
    • (1989) AIChE J , vol.35 , Issue.12 , pp. 1993-2002
    • Venkatasubramanian, V.1    Chan, K.2
  • 59
    • 0025458937 scopus 로고
    • Process fault detection and diagnosis using neual networks - I. Steady-state processes
    • Venkatasubramanian, V., Vaidyanathan, R. and Yamamoto, Y. (1990). Process fault detection and diagnosis using neual networks - I. Steady-state processes. Comput. Chem. Engng 14(7), 699-712.
    • (1990) Comput. Chem. Engng , vol.14 , Issue.7 , pp. 699-712
    • Venkatasubramanian, V.1    Vaidyanathan, R.2    Yamamoto, Y.3
  • 60
    • 0031144894 scopus 로고    scopus 로고
    • Operator guidance system for industrial plant supervision
    • Villanueva, H., Lamba, H. (1997). Operator Guidance System for Industrial Plant Supervision, Expert Systems With Applications, 12 (4), 441-454.
    • (1997) Expert Systems with Applications , vol.12 , Issue.4 , pp. 441-454
    • Villanueva, H.1    Lamba, H.2
  • 61
    • 0024774133 scopus 로고
    • Feedback strategies in multiple sensor systems
    • Wise, B. M. and Ricker, N. L. (1989). Feedback Strategies in Multiple Sensor Systems, AIChE Symp. Series 85, 19-23.
    • (1989) AIChE Symp. Series 85 , pp. 19-23
    • Wise, B.M.1    Ricker, N.L.2
  • 62
    • 0028387439 scopus 로고
    • On-lime process fault diagnosis using fuzzy neural network techniques
    • Zhang, J. and Morris, A.J. (1994). On-lime process fault diagnosis using fuzzy neural network techniques, Intelligent Systems Engineering, 3(1) 37-47.
    • (1994) Intelligent Systems Engineering , vol.3 , Issue.1 , pp. 37-47
    • Zhang, J.1    Morris, A.J.2
  • 63
    • 84965393849 scopus 로고
    • On-line process fault diagnosis using neural network techniques
    • Zhang, J., and Roberts, P. D. (1992). On-line process fault diagnosis using neural network techniques, Trans Inst Measurement and Control, 14(4), 179-188.
    • (1992) Trans Inst Measurement and Control , vol.14 , Issue.4 , pp. 179-188
    • Zhang, J.1    Roberts, P.D.2
  • 64
    • 0029754813 scopus 로고    scopus 로고
    • Fault detection and diagnosis using multivariate statistical techniques
    • Zhang, J., Martin, E.B. and Morris, A.J. (1996) Fault detection and diagnosis using multivariate statistical techniques, Trans IchemE, 74, A, 89-96.
    • (1996) Trans IchemE , vol.74 , Issue.A , pp. 89-96
    • Zhang, J.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.