-
1
-
-
0028304539
-
-
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, and A. Y. Cho, Science 264, 553 (1994); G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, ibid. 276, 773 (1997); C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, ibid. 286, 749 (1999).
-
(1994)
Science
, vol.264
, pp. 553
-
-
Faist, J.1
Capasso, F.2
Sivco, D.L.3
Sirtori, C.4
Cho, A.Y.5
-
2
-
-
0031547954
-
-
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, and A. Y. Cho, Science 264, 553 (1994); G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, ibid. 276, 773 (1997); C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, ibid. 286, 749 (1999).
-
(1997)
Science
, vol.276
, pp. 773
-
-
Scamarcio, G.1
Capasso, F.2
Sirtori, C.3
Faist, J.4
Hutchinson, A.L.5
Sivco, D.L.6
Cho, A.Y.7
-
3
-
-
0033595805
-
-
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, and A. Y. Cho, Science 264, 553 (1994); G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, ibid. 276, 773 (1997); C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, ibid. 286, 749 (1999).
-
(1999)
Science
, vol.286
, pp. 749
-
-
Gmachl, C.1
Tredicucci, A.2
Sivco, D.L.3
Hutchinson, A.L.4
Capasso, F.5
Cho, A.Y.6
-
4
-
-
0030290425
-
-
See, e.g., V. B. Gortinkel, S. Luryi, and B. Gelmont, IEEE J. Quantum Electron. 32, 1995 (1996); L. Friedman and R. A. Soref, J. Appl. Phys. 83, 3480 (1998).
-
(1996)
IEEE J. Quantum Electron.
, vol.32
, pp. 1995
-
-
Gortinkel, V.B.1
Luryi, S.2
Gelmont, B.3
-
5
-
-
0000988612
-
-
See, e.g., V. B. Gortinkel, S. Luryi, and B. Gelmont, IEEE J. Quantum Electron. 32, 1995 (1996); L. Friedman and R. A. Soref, J. Appl. Phys. 83, 3480 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 3480
-
-
Friedman, L.1
Soref, R.A.2
-
8
-
-
0001667831
-
-
This can be viewed as an extension of the Monte Carlo scheme previously proposed, but limited to the active region only [R. C. Iotti and F. Rossi, Appl. Phys. Lett. 76, 2265 (2000).] The present approach, however, does not require any phenomenological assumption on injection/loss mechanisms. This allows us to consistently simulate carrier relaxation processes, without resorting to external parameters. Corrections to the Schrödinger-Poisson self-consistent field due to hot carriers can be neglected for these relatively low densities.
-
(2000)
Appl. Phys. Lett.
, vol.76
, pp. 2265
-
-
Iotti, R.C.1
Rossi, F.2
-
10
-
-
0040673047
-
-
note
-
In this charge-conserving scheme the current density across the whole structure is a pure output of the simulation. The current/voltage characteristics of the semiconductor heterostructure can thus be obtained within a purely microscopic description.
-
-
-
-
11
-
-
0032517715
-
-
C. Sirtori, P. Kruck, S. Barbieri, P. Collot, and J. Nagle, Appl. Phys. Lett. 73, 3486 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 3486
-
-
Sirtori, C.1
Kruck, P.2
Barbieri, S.3
Collot, P.4
Nagle, J.5
-
13
-
-
0039487752
-
-
note
-
v has nothing to do with the effective temperature invoked in a macroscopic n-level description, which becomes negative in the case of population inversion.
-
-
-
|