메뉴 건너뛰기




Volumn 158, Issue 1, 1999, Pages 59-62

Predicting length-of-stay in preterm neonates

Author keywords

Artificial neural network; Length of stay; Neural networks computer; Prediction; Preterm neonate

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; HUMAN; LENGTH OF STAY; MAJOR CLINICAL STUDY; MEDICAL DECISION MAKING; NEWBORN; PREMATURITY; PRIORITY JOURNAL; PROGNOSIS; RISK ASSESSMENT;

EID: 0033002639     PISSN: 03406199     EISSN: None     Source Type: Journal    
DOI: 10.1007/s004310051010     Document Type: Article
Times cited : (47)

References (8)
  • 3
    • 0028819928 scopus 로고
    • Score for neonatal acute physiology: Validation in three Kaiser permanent neonatal intensive care units
    • Escobar GJ, Fischer A, Li DK, Kremers R, Armstrong MA (1995) Score for neonatal acute physiology: validation in three Kaiser permanent neonatal intensive care units. Pediatrics 96:918-922
    • (1995) Pediatrics , vol.96 , pp. 918-922
    • Escobar, G.J.1    Fischer, A.2    Li, D.K.3    Kremers, R.4    Armstrong, M.A.5
  • 5
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs RA (1988) Increased rates of convergence through learning rate adaptation. Neural Networks 4:295-308
    • (1988) Neural Networks , vol.4 , pp. 295-308
    • Jacobs, R.A.1
  • 7
    • 0013587940 scopus 로고
    • NeuralWare, Pittsburgh
    • Predict Manual (1995) NeuralWare, Pittsburgh
    • (1995) Predict Manual


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.