메뉴 건너뛰기




Volumn 63, Issue 6, 2001, Pages

Many-hole interactions and the average lifetimes of chaotic transients that precede controlled periodic motion

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC STABILITY; LYAPUNOV METHODS; MATHEMATICAL MODELS; MOTION CONTROL; NUMERICAL ANALYSIS; PROBABILITY;

EID: 0035365387     PISSN: 1063651X     EISSN: None     Source Type: Journal    
DOI: 10.1103/PhysRevE.63.066205     Document Type: Article
Times cited : (25)

References (50)
  • 10
    • 0003582543 scopus 로고
    • Cambridge University Press, Cambridge, England
    • E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1993).
    • (1993) Chaos in Dynamical Systems
    • Ott, E.1
  • 20
    • 85035282003 scopus 로고    scopus 로고
    • T. Tél, in Directions in Chaos, edited by Hao Bai-lin (World Scientific, Singapore, 1990), Vol. 3, p. 149
    • T. Tél, in Directions in Chaos, edited by Hao Bai-lin (World Scientific, Singapore, 1990), Vol. 3, p. 149
  • 39
    • 45949120176 scopus 로고
    • We use the term shadowing in connection with rather different phenomena
    • The term shadowing is used in many areas of physics. An important issue in nonlinear dynamics is to see whether a certain system (or class of systems) has a shadowing property. In chaotic systems, a numerical trajectory diverges exponentially fast from the true trajectory. Shadowing property of a chaotic system means that there exists a true trajectory with slightly different initial condition that stays close or shadows the numerical trajectory, e.g., see S. M. Hammel, J. A. Yorke, and C. Grebogi, J. Complexity 3, 136 (1987). We use the term shadowing in connection with rather different phenomena.
    • (1987) J. Complexity , vol.3 , pp. 136
    • Hammel, S.M.1    Yorke, J.A.2    Grebogi, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.